首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited from pure silane (SiH4) and hydrogen (H2) gas mixture by conventional plasma enhanced chemical vapour deposition (PE-CVD) method at low temperature (200 °C) using high rf power. The structural, optical and electrical properties of these films are carefully and systematically investigated as a function of hydrogen dilution of silane (R). Characterization of these films with low angle X-ray diffraction and Raman spectroscopy revealed that the crystallite size in the films tends to decrease and at same time the volume fraction of crystallites increases with increase in R. The Fourier transform infrared (FTIR) spectroscopic analysis showed at low values of R, the hydrogen is predominantly incorporated in the nc-Si:H films in the mono-hydrogen (SiH) bonding configuration. However, with increasing R the hydrogen bonding in nc-Si:H films shifts from mono-hydrogen (SiH) to di-hydrogen (SiH2) and (SiH2)n complexes. The hydrogen content in the nc-Si:H films decreases with increase in R and was found less than 10 at% over the entire studied range of R. On the other hand, the Tauc's optical band gap remains as high as 2 eV or much higher. The quantum size effect may responsible for higher band gap in nc-Si:H films. A correlation between electrical and structural properties has been found. For optimized deposition conditions, nc-Si:H films with crystallite size 7.67 nm having good degree of crystallinity (84% ) and high band gap (2.25 eV) were obtained with a low hydrogen content (6.5 at%). However, for these optimized conditions, the deposition rate was quite small (1.6 Å/s).  相似文献   

2.
Hydrogenated amorphous silicon (a-Si:H) thin films were deposited from pure silane (SiH4) using hot-wire chemical vapor deposition (HW-CVD) method. We have investigated the effect of substrate temperature on the structural, optical and electrical properties of these films. Deposition rates up to 15 Å s−1 and photosensitivity 106 were achieved for device quality material. Raman spectroscopic analysis showed the increase of Rayleigh scattering in the films with increase in substrate temperature. The full width at half maximum of TO peak (ΓTO) and deviation in bond angle (Δθ) are found smaller than those obtained for P-CVD deposited a-Si:H films. The hydrogen content in the films was found <1 at% over the range of substrate temperature studied. However, the Tauc's optical band gap remains as high as 1.70 eV or much higher. The presence of microvoids in the films may be responsible for high value of band gap at low hydrogen content. A correlation between electrical and structural properties has been found. Finally, the photoconductivity degradation of optimized a-Si:H film under intense sunlight was also studied.  相似文献   

3.
Boron-doped hydrogenated microcrystalline silicon (μc-Si:H) films were prepared using hot-wire chemical vapor deposition (HWCVD) technique. Structural, electrical and optical properties of these thin films were systematically studied as a function of B2H6 gas (diborane) phase ratio (Variation in B2H6 gas phase ratio, dopant gas being diluted in hydrogen, affected the film properties through variation in doping level and hydrogen dilution). Characterization of these films from low angle X-ray diffraction and Raman spectroscopy revealed that the high conductive film consists of mixed phase of microcrystalline silicon embedded in an amorphous network. Even a small increase in hydrogen dilution showed marked effect on film microstructure. At the optimized deposition conditions, films with high dark conductivity (0.08 (Ω cm)−1) with low charge carrier activation energy (0.025 eV) and low optical absorption coefficient with high optical band gap (2.0 eV) were obtained. At these deposition conditions, however, the growth rate was small (6 Å/s) and hydrogen content was large (9 at%).  相似文献   

4.
Cadmium selenide (CdSe) films were prepared by hot wall deposition technique using optimized tube length under a vacuum of 6 mPa on to well-cleaned glass and ITO substrates. The X-ray diffraction analysis revealed that the films are polycrystalline in nature for lower thickness and at lower substrate temperatures, but with increasing thickness and increasing substrate temperature a more preferred orientation along (0 0 2) direction was observed. The crystallite size (D), dislocation density (δ) and strain () were calculated. An analysis of optical measurements revealed a sharp absorption around 700 nm and a direct allowed transition. The band gap was found to be around 1.7 eV. The effect of thickness and substrate temperature on the fundamental optical parameters like band gap, refractive index and extinction coefficient are studied.  相似文献   

5.
This paper reports the effect of annealing on hydrogenated amorphous silicon films (a-Si : H) deposited by r.f. self-bias technique on cathode in an asymmetric r.f. plasma CVD system at room temperature. Detailed study of the variation of the dark and photoconductivity (σD and σph) as a function of temperature and light intensity, surface morphology, hydrogen evolution, optical absorption, subgap absorption and related parameters, thermal and structural disorder on the optical-absorption edge, IR vibrational modes and bonded hydrogen content have been carried out on unannealed and annealed samples at different temperatures (Ta) from 100°C to 550°C. It is found that the values of σph increase and that of Urbach energy (Eo), subgap defect density (Nd) and the polyhydride to monohydride ratio decrease upto Ta=250°C and beyond 250°C the values of σph decrease and that of Eo, Nd and the polyhydride to monohydride ratio increase. The best opto-electronic properties with much improved σph and σph/σD and dominant monohydride bonding are obtained after annealing the room temperature deposited film at 250°C for 1 h. The σD data obeys a Meyer Neldel rule in annealed a-Si : H films. The value of optical band gap is found to be related to the Eo and the hydrogen content. The Urbach energy (Eo) which is a measure of the disorder is the sum of structural and thermal disorder. The structural disorder part decreases with the annealing temperature upto 300°C and thereafter it increases. The curves of optical absorption coefficient versus photon energy at different Ta converge to a common point.  相似文献   

6.
Hydrogenated amorphous silicon (a-Si:H) thin films were fabricated by Radio Frequency (RF) magnetron sputtering. For solar-cell applications, a-Si:H layers are required to show low dark conductivity and high photoconductivity and, thus, high photosensitivity. Hydrogen flow ratio and working pressure were mainly adjusted to control bonding configurations and hydrogen concentration in the films. At a high working pressure of 12 mTorr, all of the prepared amorphous and microcrystalline silicon films showed a dominant IR absorption peak at 2100 cm−1, which indicates a Si-H2 stretching mode, grain boundaries and microvoids. When the working pressure was decreased to as low as 3 mTorr with a hydrogen flow ratio of 0.1, the bonding configuration of the films was mainly Si-H as determined by the dominant IR absorption peak at 2000 cm−1, and the photosensitivity of the films was maximized to 760.  相似文献   

7.
The effects of the silane concentration f on the structural, optical and electrical properties of undoped hydrogenated silicon films prepared in a plasma-enhanced chemical vapour deposition system have been studied. The electrical conductivity and Hall mobility appear to be controlled by microstructures induced by silane concentration and a clear electrical transport transition from crystalline to amorphous phase has been found when 3%<f<4%. A two-phase model has been used to discuss the electrical properties.  相似文献   

8.
We deposited a-Si : H,F films at a high-growth rate (15 Å/s) using a SiH4 and SiF4 gas mixture to examine the effect of halogen additives on the film stability against light exposure. Fluorinated a-Si : H films show a high conductivity over 5×10−5 S/cm and the Schottky cells made with fluorinated films exhibit an improved fill factor after light-soaking. SIMS measurements show an increased oxygen incorporation into the film at a SiF4 flow of 5 sccm or larger, while virtually no increase is seen when a small SiF4 flow rate of 1 sccm is used. This is presumably an indication that a small amount of SiF4 can actually help improve the stability of a-Si : H films against light exposure.  相似文献   

9.
Multilayer structures of the type a-Si:H/μc-Si:H were fabricated for the first time by hot wire chemical vapor deposition (HW-CVD) technique. These multilayers were studied for their opto-electronic and photovoltaic properties as a function of a-Si:H sublayer thickness. The microcrystalline phase of a-Si (μc-Si:H) of thickness 250 Å have been used to create drift field in these multilayer structures. The quantum size and photovoltaic effects are observed in these multilayer structures. The persistent photoconductivity measurements clearly indicate the existence of interface defects and spatial charge separation due to the formation of p-n junction field. The best photovoltaic performance was obtained with the fill factor 0.4062 and conversion efficiency (η) 2.08% over an active area of 0.0132 cm2. The advantage in these multilayer structures is that no hazardous gases are involved in the fabrication process because no intentional doping is performed and all depositions were carried out in a single deposition chamber.  相似文献   

10.
Cadmium sulfide films of different thicknesses were deposited by chemical bath deposition (CBD) from a bath containing cadmium acetate, ammonium acetate, thiourea, and ammonium hydroxide. The XRD patterns show that the films are of hexagonal phase with preferred (0 0 2) orientation and the grain size increases with the thickness of the film. The band gap of the films was calculated from the transmittance data and it was found that the band gap decreases as the film grows in thickness. The photo-response studies indicate that the film thickness has an influence on the current decay under dark. The observed opto-electronic properties were attributed to the crystallite size and internal microstrain.  相似文献   

11.
Thin films of tungsten oxide, molybdenum oxide and mixed MoO3–WO3 oxides were obtained by atmospheric pressure chemical vapor deposition (CVD). All the films were prepared using identical technological parameters and through investigation of the optical properties of as deposited and annealed at 400°C a comparative study is reported. Raman, IR and VIS spectrophotometry and spectral ellipsometry methods were used. The mixed MoO3–WO3 films have higher optical absorption with maxima at a closer position with respect to the human eye sensitivity peak at 2.5 eV. The observed electrochromic effect is better expressed in the mixed films; the electrical charge inserted is higher.  相似文献   

12.
Cadmium oxide thin films with different percentages of aluminum doping have been synthesized via radio frequency magnetron sputtering technique. Thin films were deposited on glass and silicon substrates with different percentages of aluminum at a substrate temperature of 573 K and pressure of 0.1 mbar in Ar+O2 atmosphere. The deposited films were characterized by studying their structural, electrical and optical properties. The X-ray diffraction pattern revealed good crystallinity with preferred (1 1 1) orientation in the films. Aluminum doping in CdO thin films were confirmed by X-ray photoelectron spectroscopic studies and actual doping percentages were also measured from it. The optical band gap was found to decrease first and then increase with increasing percentages of aluminum concentrations. The electrical conductivity was found to increase with increase of aluminum doping concentration up to 5% but for higher doping concentration (>5%) the conductivity was found to decrease.  相似文献   

13.
Crystallinity of thin film polycrystalline silicon (poly-Si) grown by atmospheric pressure chemical vapor deposition has been investigated by X-ray diffraction measurement and Raman spectroscopy. Poly-Si films deposited at high temperatures of 850–1050°C preferred to 2 2 0 direction. By Raman spectroscopy, the broad peak of around 480–500 cm−1 belonged to microcrystalline Si (μc-Si) phase was observed even for the poly-Si deposited at 950°C. After high-temperature annealing (1050°C) 3 3 1 direction of poly-Si increased. This result indicates that the μc-Si phase at grain boundary became poly-Si phase preferred to 3 3 1 direction by high-temperature annealing. Effective diffusion length of poly-Si films deposited at 1000°C was estimated to be 11.9–13.5 μm and 10.2–12.9 μm before and after annealing, respectively.  相似文献   

14.
The fabrication details, as well as basic structural and optical properties, of low temperature plasma enhanced reactively sputtered InN thin films are presented. SEM and AFM studies of surface morphology, including a microstructural cross-section were performed. Optical absorption and reflectance spectra of InN textured films at room temperature in the visible and NIR regions were taken, to reproduce accurately the dielectric function as well as to determine the optical effective mass of electrons (0.11) and the direct band gap (2.03 eV). Some TO (445, 480 and 490 cm−1) and also LO (570 cm−1) phonon features of indium nitride polycrystalline films in the near infrared and Raman spectra are presented and discussed.These results, both as obtained now and a few years ago from identical samples just after preparation, are in good agreement. This demonstrates an extraordinary long-term stability of this compound, with respect to its optical and electrical characteristics. The attractive possibilities based on model calculations of InN/Si tandem film systems for potential applications in photovoltaic devices, including high efficiency thin film solar cells, are emphasized and discussed.  相似文献   

15.
The preparation by the rf sputtering technique and characterisation of ZnO thin films used as windows in solar cells are described. The electrical behaviour and structural spectra clearly show an important effect of the substrate position with respect to the target. In fact, among all the studied substrate positions, only the samples facing the target are randomly oriented having the mixed orientation (100), (002) and (101). All the others have the c(002)-axis orientation. The scanning electron-microscope observations confirm the X-ray analysis results. The last samples have a resistivity as low as 10−3 Ωcm while the randomly-oriented, ones have a large resisivity of about 102−103 Ωcm These latter show, in their transmittance characteristics, a slight shift towards higher wavelengths. However, no effect is noticed when the other samples are optically assessed. Consequently, the optical gap is found to be about 3.38 eV for the conducting films and 3.3 eV for the ones having a higher resistivity. The average transmittance in the visible range is around 85–90% for all the samples  相似文献   

16.
One of the fabrication issues in hetero-junction crystalline Si solar cells is the overhead time between the deposition steps of the top and bottom surfaces, because flipping of the progressing wafer is necessary to process the both sides of the wafer. To reduce the overall processing time by reducing the overhead time, we propose a dual-chamber deposition system, where thin films on the top and bottom surfaces of the Si wafer are simultaneously deposited. We have evaluated the proposed deposition system by demonstrating fabricated hetero-junction crystalline Si solar cells, which were compared with solar cells fabricated by a conventional plasma-enhanced chemical deposition system. We have obtained the power conversion efficiency of 15.5% from solar cells fabricated by our dual-chamber system; and additional analyses confirmed that the proposed dual-chamber system is, in principle, competitive with conventional systems in terms of the fabricated solar cell performance. This novel concept for the fabrication of a hetero-junction crystalline Si solar cell is expected to lay an important foundation in the future thin film crystalline Si based photovoltaic industry.  相似文献   

17.
High-quality Cu2ZnSnS4 (CZTS) thin films were synthesized by pulsed laser deposition as a function of pulse repetition rate onto the SLG substrates. Influence of pulse repetition rate onto the structural, morphological, compositional and optical properties have been investigated for as-deposited and annealed thin films. X-ray diffraction study shows transformation of amorphous to crystalline phase after tuning pulse repetition rate and annealing of samples. FESEM images of thin films show increase in grain size upon annealing. Films are nearly stoichiometric deposited at 10 Hz repetition rate has been confirmed with the help of EDAX and XPS analysis. The direct band gap energy of the deposited CZTS thin films are in the solar energy range. The performance of solar cell based on CZTS absorber layer has been tested and the efficiency is about 2%.  相似文献   

18.
A.A. Dakhel 《Solar Energy》2009,83(6):934-402
Lightly Dy-doped CdO thin films (molar 0.5%, 1%, 2%, and 2.5%) have been prepared by a vacuum evaporation method on glass and Si wafer substrates. The prepared films were characterised by X-ray fluorescence, X-ray diffraction, UV-vis-NIR absorption spectroscopy, and dc-electrical measurements. Experimental data indicate that Dy3+ doping slightly stretchy-stresses the CdO crystalline structure and changes the optical and electrical properties. The bandgap of CdO was suddenly narrowed by about 20% due to a little doping with Dy3+ ions. Then, as the Dy doping level was increased, the energygap was also increased. This variation was explained by the effect of Burstein-Moss energy shift (or bandgap widening effect) together with a bandgap shrinkage effect. The electrical behaviour of the samples shows that they are degenerate semiconductors. However, the 2% Dy-doped CdO sample shows an increase in its mobility by about 3.5 times, conductivity by 35 times, and carrier concentration by 10 times relative to undoped CdO film. From transparent conducting oxide point of view, Dy is sufficiently effective for CdO doping.  相似文献   

19.
The third (P3) laser patterning step of thin film photovoltaic devices is studied experimentally using a diode pumped solid state laser with 532 nm wavelength and a delay generator. The effect on the electrical characteristics of the devices due to the patterning process is investigated by performing scribes on single, thin-film solar cells. As it is shown, in this type of experiments the inertia in the motion systems or in the scanner controlling the direction of the laser beam plays a critical role in the results. By controlling externally the output of the laser beam it is possible to overcome the inertia and investigate the real effect of the P3 laser scribing on the device electrical characteristics. When the laser scribing conditions are optimized and the inertia in the system is taken care of, the P3 process has very little effect on the device electrical characteristics. Translated to modules this means that by optimizing the P3 process, the decrease in the efficiency found when up-scaling from single cells to modules can be minimized (as far as the P3 process is concerned) to that coming from the removed area.  相似文献   

20.
Thin film n-CdS/p-CdTe solar cells were prepared from chemical bath deposited CdS and electrodeposited CdTe layers. The microstructural and some electrical properties of these layers were studied and connection with photovoltaic performance of the cells was shown. Especially, adherence of the CdS films and the quality of heterojunction interface manifesting themselves in the value of the open-circuit voltage Uoc depend on the cadmium precursor used for CdS deposition and on whether pH buffered conditions were applied or not. The number of CdS layers in the cells needed to obtain Uoc of about 700 mV is connected with the CdS deposition conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号