首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The stoichiometry of the reaction of Np(VI) with cis-cyclohexanediaminetetraacetic acid (CHDTA, H4chdta) in 0.05 M HClO4 solution was studied by spectrophotometry. With Np(VI) in excess, 1 mol of the complexone converts 4 mol of Np(VI) into Np(V). In 0.115–0.98 M HClO4 solutions (the ionic strength of 1.0 was supported with LiClO4) containing 3–29 mM CHDTA at 20–45°С, Np(VI) at a concentration of 0.2–3.3 mM is consumed in accordance with the first-order rate law until less than 40% of Np(VI) remains. After that, the reaction decelerates. The reaction rate has first order with respect to [CHDTA] and the order of–1.2 with respect to [H+]. The activated complex is formed with the loss of one and two Н+ ions. The activation energy is 82.3 ± 3.8 kJ mol–1.  相似文献   

2.
Oxidation of Np(V) to Np(VI) with xenon trioxide in a 0.5–1.4 M HClO4 solution was studied by spectrophotometry. The reaction rate is described by the equation–d[Np(V)]/dt = k[Np(V)][XeO3], where k = 4.6 × 10–3 L mol–1 s–1 in 1 M HClO4 at 92°С. The activation energy is close to 92 kJ mol–1. The activated complex is formed in contact of NpO 2 + and ХеО3 without participation of Н+ ions. The activated complex transforms into NpO 2 2+ and the products: ОН, Хе, and О2. The ОН radical oxidizes Np(V). Admixtures of Со2+ and especially Fe3+ accelerate the Np(V) oxidation.  相似文献   

3.
The Np(V) reduction with hydroxyethylhydrazine is described by the equation −d[Np(V)]/dt = k 1[Np(V)][HOC2H4N2H 4 + ] + k 2[Np(V)][Np(IV][H+]1.8, reflecting its main and autocatalytic pathways. The rate constants are k 1 = 0.31±0.04 l mol−1 min−1 and k 2 = 4.04±0.11 l2.8 mol−2.8 min−1 at 80°C and ionic strength μ = 4. The activation energies are E 1 = 90±6 and E 2 = 116±4 kJ mol−1, respectively. The autocatalytic pathway is limited by the reaction between hydroxyethyldiazenium ions, HOC2H4N2H 2 + and protonated Np(V) ions. __________ Translated from Radiokhimiya, Vol. 47, No. 2, 2005, pp. 150–153. Original Russian Text Copyright ? 2005 by V. Koltunov, Baranov, G. Koltunov.  相似文献   

4.
Stoichiometry of the reaction of Np(VI) with N(CH2COOH)3 (NTA) in a 0.05 M HClO4 solution was studied by spectrophotometry. With excess Np(VI), 1 mol of NTA reduces 2 mol of Np(VI) to Np(V). In 0.05–0.98 M HClO4 solutions (the ionic strength I = 1.0 was maintained by adding LiClO4) containing 5–30 mmol of NTA, at 25–45°С Np(VI) at a concentration of 0.3–2 mM is consumed in accordance with a firstorder rate law until less than 1/3 of Np(VI) remains in the solution. After that, the reaction decelerates. The reaction is first-order with respect to NTA and has an order of–2 with respect to Н+ ions. The activated complex is formed with the loss of two Н+ ions. The activation energy of the reaction is 100 ± 2 kJ mol–1.  相似文献   

5.
A spectrophotometric study showed that ozone in concentrated carbonate solutions forms complexes with CO 3 2? ions, which inhibits the ozone decomposition. Free ozone oxidizes Np(V) at high rate. The bound ozone reacts with Np(V) at moderate rate. Np(IV) reacts with O3 slowly, with Np(VI) formed in NaHCO3 solution and only Np(V) formed in Na2CO3 solution.  相似文献   

6.
The stoichiometry of the reaction Np(VI) + H3hedta [hedta is N-(2-hydroxyethyl)ethylenediaminetriacetate, HEDTA, anion] in a 0.05 M HClO4 solution was studied by spectrophotometry. With Np(VI) in excess, 1 mol of HEDTA reduces 4 mol of Np(VI) to Np(V). In 0.125–1.0 M HClO4 solutions (the ionic strength of 1.0 was maintained constant by adding LiClO4), containing 3–29.2 mM HEDTA, at 20–45°С Np(VI) at a concentration of 0.4–3.5 mM is consumed in accordance with a first-order rate law until approximately 40% of Np(VI) remains. Then, the reaction decelerates. The reaction rate has first order with respect to [HEDTA] and the order of–1.6 with respect to [Н+]. The activated complex arises with the loss of one and two Н+ ions. The activation energy is 88.4 ± 5.3 kJ mol–1.  相似文献   

7.
Oxidation of U(IV) with nitric acid in 30% solution of TBP in n-dodecane is catalyzed by Tc ions; the rate-determining steps are 3U(IV) + 2Tc(VII) → 3U(VI) + 2Tc(IV) and Tc(IV) + Tc(VII) → Tc(V) + Tc(VI). Oxidation of U(IV) is inhibited by the reaction product, HNO2, which partially binds Tc(IV) ions (TcO2+) in an inert complex. The overall rate equation of U(IV) oxidation is-d[U(IV)]/dt = k 1[U(IV)][Tc][HNO3]?3 ? k 4[U(IV)]2[HNO2]2[HNO3]?1, where k 1 = 4.8 ± 1.0 mol21?2 min?1 and k 4 = (2.4 ± 1.0) × 105 12 mol?2 min?1 at 25°C, [H2O] = 0.4 M ([Tc] is the total Tc concentration in the reaction mixture). Water and U(VI) have no effect on the reaction rate.  相似文献   

8.
Coordination of Np(III–VII) atoms in the crystal structures of all the oxygen-containing compounds characterized with the R-factor lower than 0.1 was analyzed with the aid of Voronoi–Dirichlet polyhedra (VDPs). Nine types of NpO n coordination polyhedra (6 ≤ n ≤ 12) are realized. The most characteristic of them are trigonal dodecahedra [Np(IV)], penta- and hexagonal bipyramids [Np(V) and Np(VI)], and octahedra [Np(VII)] based on square NpO4 cores. For Np atoms of a fixed oxidation state, the volume of their VDPs in the NpO n complexes is virtually independent of the coordination number n. The VDP parameters can be used for determining the valence state of the Np atoms, finding compounds with the maximal nonlinearity of the NpO2+ and NpO22+ dioxocations, and revealing errors in the crystal structure data. Anion–anion interactions involving NpO4 and OH ions are an important structure-forming factor in Np(VII) compounds. In sublattices consisting of Np atoms only (Np sublattices), the rule of 14 neighbors is fulfilled. Compounds in which binding Np···Np 5f interactions in crystal structures are possible were revealed by analysis of the VDPs of the atoms in the Np sublattices. In such compounds, the metal atoms form bent Np=O–Np bridging fragments and the NpVO7 bipyramids are combined in dimers sharing a common axial edge, with the Np atoms of the dimers being also bound via two carboxylate bridges.  相似文献   

9.
Oxidation of Np(IV) with hydrogen peroxide in NaHCO3-Na2CO3 solutions was studied by spectrophotometry. In NaHCO3 solution, Np(IV) is oxidized to Np(V) and partially to Np(VI). It follows from the electronic absorption spectra that Np(IV) in 1 M Na2CO3 forms with H2O2 a mixed peroxide-carbonate complex. Its stability constant β is estimated at 25–30. The Np(IV) bound in the mixed complex disappears in a first-order reaction with respect to [Np(IV)]. The first-order rate constant k’ is proportional to [H2O2] in the H2O2 concentration range 2.5–11 mM, but further increase in [H2O2] leads to a decrease in k′. The bimolecular rate constant k = k′/[H2O2] in solutions containing up to 11 mM H2O2 increases in going from 1 M NaHCO3 to 1 M Na2CO3 and significantly decreases with a further increase in the carbonate content. The activated complex is formed from Np(IV) peroxide-carbonate and carbonate complexes. Synchronous or successive electron transfer leads to the oxidation of Np(IV) to Np(V). Large excess of H2O2 oxidizes Np(V) to Np(VI), which is then slowly reduced. As a result, Np(V) is formed in carbonate solutions at any Np(IV) and H2O2 concentrations.  相似文献   

10.
Heteroligand compounds AnO2(bipy)OOCC6H5 (An = Np, Pu; bipy = α,α-bipyridine, C10H8N2) were synthesized and studied. It follows from powder X-ray patterns that these compounds are isostructural. Their unit cell parameters, determined by indexing of the powder X-ray patterns, are as follows: a = 9.2162 (7), b = 10.2339(8), c = 17.4083(17) Å, and β = 96.48(1)° for Np and a = 9.1983(18), b = 10.2052(18), c = 17.370(3) Å and β = 96.51(1)° for Pu. The compounds crystallize in the monoclinic system space group P21/n, Z = 4. The electronic absorption spectra of crystalline compounds suggest pentagonal-bipyramidal surrounding of the central atom and the prescence of cation-cation bonds with AnO 2 + ions acting as monodentate ligands with respect to each other. The IR spectra of the compounds were recorded, and their thermal behavior in air was studied.  相似文献   

11.
The behavior of Np(VI) and Np(V) in NaHCO3 and NaHCO3 + Na2CO3 solutions containing H2O2 was studied spectrophotometrically. In 0.75–1.0 M NaHCO3, hydrogen peroxide oxidizes Np(V) to Np(VI). The kinetics curves of Np(V) oxidation into Np(VI) have a complex shape and are characterized either by an induction period of up to tens of minutes or by a period of steady-state Np(VI) concentration, followed by an increase in the Np(VI) concentration. When Np(VI) initially exists in the solution, the induction period is lacking. The process character changes when the bicarbonate concentration decreases, or when Na2CO3 is added. In 1.0 M Na2CO3, 0.5 M NaHCO3 + 0.5 M Na2CO3, or 0.01–0.5 M NaHCO3, hydrogen peroxide completely reduces Np(VI) into Np(V). The probable mechanisms of this process were discussed. Accumulation of Np(VI) in NaHCO3 solutions can be accounted for by assuming that Np(VI) itself participates in the transformations. Initially, the reaction of Np(VI) with H2O2 yields the excited *Np(V) ion. Then it reacts with another H2O2 molecule and forms a carbonate-peroxide complex. In the collision of the latter with unexcited Np(V), two electrons from two Np(V) ions are transferred onto the O 2 2? ligand with formation of two Np(VI) ions.  相似文献   

12.
The formal potential of the Fe(CN) 6 3? /Fe(CN) 6 4? couple in 1 M NaHCO3 and 1–2 M Na2CO3 solutions was determined. It is equal to 505 and 510 mV, respectively, exceeding the potentials of the Np(VI)/(V) and Np(V)/(IV) couples in carbonate solutions. The equilibrium of the reaction Np(V) + Fe(CN) 6 3? = Np(VI) + Fe(CN) 6 4? was studied. Fe(CN) 6 3? ions oxidize Np(IV) to Np(V) and then to Np(VI). The arising Np(VI) oxidizes Np(IV). The Np(IV) oxidation accelerates in going from NaHCO3 to Na2CO3. An increase in [Na2CO3] or in the ionic strength (by adding neutral salts) decelerates the oxidation. Np(IV) introduced in an HCl solution reacts with Fe(CN) 6 3? or with Np(VI) faster than Np(IV) introduced in a Na2CO3 solution. The activation energy of the reaction of Np(IV) with Fe(CN) 6 4? in the range 20–45°C is 107 kJ mol?1. The reaction mechanism involves formation of the activated complex from ions of Np(IV) hydroxocarbonate and oxidant.  相似文献   

13.
Interaction of uranium dioxide with highly mobile radionuclides 237Np and 99Tc was studied under oxidative conditions. Sorption of these radionuclides at different pH was measured, and the mechanism of redox reaction occurring in the course of their sorption were determined. In alkaline solution, Np(V) is reduced on the UO2+x surface and is sorbed in the form of tetravalent species. In neutral solutions, Np is sorbed in the form of Np(V). This is due to the fact that the stoichiometry of the UO2+x surface corresponds to U4O9. In acid solution, U(VI) is leached to form surface UO2. Although the free surface area of a UO2+x sample is low, the Np distribution coefficients K d at pH > 6 are relatively high: log K d > 2. Unlike Np, Tc(VII) is not reduced on the UO2+x surface. However, the sorption capacity of uranium dioxide for Tc(IV) is high.  相似文献   

14.
The formal potentials of the Np(VI)/Np(V) couple E f in alkaline solutions were measured potentiometrically. In 1 M LiOH, NaOH, KOH, CsOH, and (CH3)4NOH, the potentials are equal to 0.163⊥0.004, 0.125⊥0.005, 0.112⊥0.005, 0.107⊥0.005, and 0.109⊥0.005 V, respectively. In solutions of MOH+MCl [M=Li, Na, K, Cs, and (CH3)4N] at the ionic strength of 1, the dependence of E f on log[OH?] is a straight line with a slope of 0.118⊥0.010, i.e., two OH? ions participate in the electrochemical reaction between Np(VI) and Np(V). Taking into account the well-known structure of Np(VI), it can be stated that Np(V) in solutions with [OH?]=1 M and less exists in the form of the NpO2(OH) 2 ? anion. In 2–4 M LiOH and 2–11 M NaOH or KOH, the potential decreases with increasing alkali concentration. In these media, the anion NpO2(OH) 3 2? is formed.  相似文献   

15.
Interaction of actinides(IV) with hydroxyisobutyric acid (HHIB) in aqueous solutions and in the course of crystallization of solid compounds was studied. The complexes ML n (4-n)+ (M = U, Np, Pu; L? is hydroxyisobutyrate anion; n = 1, 2, 3) exist in solution. Their apparent stepwise stability constants K?? i were measured, and the overall concentration stability constants ??3 of the complexes ML 3 + were calculated. For U(IV) and Np(IV), log??3 is close to 13.3?C13.4, and for Pu(IV), log??3 = 14.5 ± 0.9 (ionic strength I = 0.1?C0.3). In the course of crystallization in air, complexes of U(IV) with hydroxyisobutyric acid, as well as those with citric acid, undergo oxidative degradation, which can be accompanied by complete oxidation of U(IV). The crystalline compounds formed in the process are oxalates of U(IV) or U(VI). The complexation of Np(V) with HHIB was studied. NpO 2 + forms with HHIB the complexes NpO2L and NpO2L 2 ? . Their concentration stability constants are logK 1 = 2.04 ± 0.15 and logK 2 = 0.71 ± 0.10 (I = 0.4), i.e., log??2 = 2.75 ± 0.25.  相似文献   

16.
Bubbling of an ozone-oxygen mixture containing 0.1?C0.5 vol % O3 at a rate of 15?C20 l h?1 through 13 ml of a 2 × 10?5?1 × 10?4 M solution of Np(VI) in 0.1 and 1 M LiOH leads to the formation of Np(VII). The initial rate increases approximately in proportion to [Np(VI)] and [O 3 gas ]0.5. Up to 80% of Np(VI) is oxidized at maximum. At the O3 concentration in the gas phase increased to 1?C4 vol %, Np(VI) is oxidized completely. Under the same conditions, Np(VI) in a concentration of (1?C5) × 10?3 M is oxidized to almost 100%. Analysis of published data and additional experiments on the reaction of O3 with Np(VI) ions in LiOH solutions allow a conclusion that the ozonation involves the reactions O3 + OH? = HO 2 ? + O2, O3 + HO 2 ? + OH? = O 3 ? + O 2 ? + H2O, and O3 + O 2 ? = O 3 ? + O2, followed by O 3 ? + NpO2(OH) 4 2? = O2 + NpO4(OH) 2 3? + H2O. In addition, HO 2 ? reduces Np(VII) and Np(VI) and reacts with O 3 ? . Certain contribution is made by the reaction Np(VI) + O3 = Np(VII) + O 3 ? . The dependence of the Np(VII) accumulation rate on [O 3 gas ]0.5 was interpreted in terms of the concept of a heterogeneous-catalytic process.  相似文献   

17.
The formal oxidation potentials of the M(VI)/M(V), M(V)/M(IV), and M(IV)/M(III) couples for actinides from U to No and of the M(IV)/M(III) couples for some actinides in 1 M H+ or 1 M Na+ (pH ~5–5.5) solutions containing K10P2W17O61 were calculated from the data on stability of complexes of f element ions with the unsaturated heteropolytungstate anion P2W17O 61 10? . In some cases, the previously accepted values were subjected to major revision, especially the potentials of the An(V)/An(IV) couples. Problems arising in measuring the potentials of the couples involving Np(III) and Pu(III) which react with the heteropolyanion to form a heteropoly blue are discussed. The potentials of some M(III)/M(II) couples are estimated.  相似文献   

18.
The stability of Np(VI) in 5–200 mM iminodiacetic acid (H2IDA) solutions at 23.5–55°С was studied by spectrophotometry. In a solution with pH 2 and excess Np(VI), 1 mol of H2IDA reduces 2 mol of Np(VI) to Np(V). In 1 and 0.5 M HClO4 solutions containing 200 mM H2IDA and 1 mM Np(VI), no more than 36 and 65% of Np(VI), respectively, is reduced at 44.5°С. Complete reduction of Np(VI) is observed in solutions containing 0.2 M HClO4 and less. In the examined ranges of H2IDA concentrations and temperatures, Np(VI) is consumed in accordance with the first-order rate law. The reduction mechanism involves formation of a Np(VI) iminodiacetate complex, which is followed by intramolecular charge transfer. The generated radical reduces Np(VI). The activation energy is 107 ± 3 kJ mol–1.  相似文献   

19.
Reduction of Np(VI) to Np(V) with butanal oxime in the presence of excess reductant is presumably described by the equation 4NpO2 2+ + 2C3H7CHNOH + H2O = 4NpO2 + + 2C3H7CHO + N2O + 4H+, and the reaction rate, by the equation -d[Np(VI)]/dt = k[Np(VI)][C3H7CHNOH]/[H+], with k = 230±15 min-1 at 25°C and the ionic strength of the solution = 2. This equation holds for solutions with different values of the ionic strength and HNO3 concentration. The activation energy is 69.4±12.4 kJ mol-1.  相似文献   

20.
The effect of experimental conditions on UVL2 (1–2 mM) disproportionation was studied spectrophotometrically through the UIVL2 accumulation (L = P2W17O 61 10? ). In 1 M NaNO3 solution containing 0.01 M HAc and 0.01 M NaAc, the rate of UVL2 disappearance is described by the equation V = k 1[UVL2]. The k 1 value is almost constant with pH decreasing from 4.5 to 1.7, but increases with increasing acetate concentration; the presence of 1 mM UIVL2, U(VI), or L does not affect k 1. In the solutions of 0.1–1.0 M HClO4 (ionic strength 1), the reaction rate is described by the equation V = 2k 2[H+]2.5[UVL2]2. Probable disproportionation mechanism is discussed. The first stage is substitution of L by water molecules in the UIVL2 complex and appearance of the reactive U(V) complex with mixed coordination sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号