首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tribological properties of Ni3Al-Cr7C3 composite coating under water lubrication were examined by using a ball-on-disc reciprocating tribotester. The effects of load and sliding speed on wear rate of the coating were investigated. The worn surface of the coating was analyzed using electron probe microscopy analysis (EPMA) and X-ray photoelectron spectroscopy (XPS). The results show the friction coefficient of the coating is decreased under water lubrication. The wear rate of the coating linearly increases with the load. At high sliding speed, the wear rate of the coating is dramatically increased and a large amount of the counterpart material is transferred to the coating worn surface. The low friction of the coating under water lubrication is due to the oxidizing of the worn surface in the wear. The wear mechanism of the coating is plastic deformation at low normal load and sliding speed. However, the wear mechanism transforms to microfracture and microploughing at high load with low sliding speed, and oxidation wear at high sliding speed. It is concluded that the contribution of the sliding speed to an increase in the coating wear is larger than that of the normal load.  相似文献   

2.
The tribological behavior of 30 vol% carbon fiber–reinforced polyetheretherketone (CFRPEEK) against AISI 431 steel under different temperatures of water lubrication was investigated. Friction and wear tests were carried out on a disc-on-disc contact test apparatus under different operating conditions. The results reveal that the lubricant temperature has a significant effect on the friction and wear properties of CFRPEEK sliding against AISI 431 steel. The average friction coefficient and wear rate of CFRPEEK increase with increasing lubricant temperature. However, the wear rate of AISI 431 steel did not have a positive correlation with the wear rate of CFRPEEK under different temperatures of water lubrication. Moreover, the original and worn surfaces of CFRPEEK and AISI 431 steel were imaged by environmental scanning electron microscopy and optical microscopy, respectively. The main tribological mechanisms of CFRPEEK sliding against AISI 431 steel were adhesive wear, and increasing the temperature of the lubricant could accelerate wear.  相似文献   

3.
Selecting the proper material and surface treatment methods for elements is one of the essential problems when designing water hydraulic components due to the corrosiveness and poor lubricity of water. Experimental investigation was performed to study the tribological properties of ion-nitrided 2Cr13, a kind of martensitic stainless steel, sliding on carbon fiber–reinforced polyetheretherketone (CFRPEEK). The influence of factors such as sliding velocity, load, and lubrication condition were studied through experiments mainly under tap water lubrication. It was found that the friction coefficients are influenced by both the pressure and the sliding velocity. In contrast, the friction coefficients between quenched 2Cr13 and CFRPEEK are much higher. Compared to water lubrication, both the wear rate and friction coefficients increase in the case of dry friction. Wear mainly occurred on the CFRPEEK. By examining the worn surfaces of the specimens, it was found that adhesion was the main form of wear of the PEEK composite.  相似文献   

4.
Horst Czichos  Karl-Heinz Habig 《Wear》1986,110(3-4):389-400
The tribological behaviour of medium carbon steel has been systematically studied as a function of (i) material properties, such as hardness and microstructure, (ii) kinematics, i.e. sliding and rolling, and (iii) lubrication modes and environmental conditions, including vacuum, air and boundary lubrication.

As characteristic results it is found that not only the material properties per se but also system-dependent characteristics, such as the ratios of the hardness and roughness values of the stationary and moving specimens, are important parameters in the friction and wear behaviour. Scanning electron microscopy studies revealed that the tribological behaviour is governed by different prevailing basic wear mechanisms.  相似文献   


5.
Fe–Ni–RE self-fluxing alloy powders were flame sprayed onto 1045 carbon steel. The tribological properties of Fe–Ni–RE alloy coatings under dry sliding against SAE52100 steel at ambient conditions were studied on an Optimol SRV oscillating friction and wear tester in a ball-on-disc contact configuration. Effects of load and sliding speed on tribological properties of the Fe–Ni–RE coatings were investigated. The worn surfaces of the Fe–Ni–RE alloy coatings were examined with a scanning electron microscopy(SEM) and an energy-dispersive spectroscopy(EDS). It was found that the Fe–Ni–RE alloy coatings had better wear resistance than the SAE52100 steel. An adhered oxide debris layer was formed on the worn surface in friction. Area of the friction layer varied with variety of sliding speed, but did not vary with load. The oxide layer contributed to decreased wear, but increased friction. Wear rate of the material increased with the load, but dramatically decreased at first and then slightly decreased the sliding speed. The friction coefficient of the material was 0.40-0.58, and decreased slightly with the load, but increased with sliding speed at first, and then tended to be a constant value. Wear mechanism of the coatings was oxidation wear and a large amount of counterpart material was transferred to the coatings.  相似文献   

6.
利用MMU-5G销-盘式端面磨损试验机考察Si3N4-hBN陶瓷复合材料与Fe-B合金配副分别在干摩擦和水润滑条件下的摩擦磨损性能,分别采用扫描电子显微镜( SEM)、激光扫描显微镜(LSM)、X光电子能谱(XPS)、X射线能谱(EDS)和X射线衍射(XRD)分析摩擦面及磨屑的形貌与物质组成.结果表明,hBN的加入未能有效地改善Si3N4-hBN/Fe-B合金摩擦副的摩擦学性能,干摩擦条件下,Si3N4-hBN摩擦表面微凸体与Fe-B合金中的硬质相Fe2B发生碰撞而导致脆性断裂和剥落,发生磨粒磨损,摩擦因数均高于0.9,磨损率均高于10-5 mm3/ (N·m)数量级;水润滑条件下,由于水流带走了磨屑,避免磨粒磨损的发生,为Si3N4-hBN摩擦表面发生化学抛光提供条件,化学抛光使销、盘试样的摩擦表面变得光滑,从而获得较为优异的摩擦学性能.  相似文献   

7.
碳纤维增强聚醚醚酮PEEK450 FC30与工程陶瓷SiC软硬组合作为海水柱塞泵关键摩擦副备选材料,利用MCF 10摩擦磨损试验机对其在海水润滑下的摩擦磨损特性进行试验研究,探讨接触压力、滑动转速对材料磨损率和摩擦系数的影响规律。试验结果表明:在一定范围内的滑动速度、接触压力下,该摩擦副呈现出较小的磨损率和摩擦系数。当滑动速度在0.5~1.5 m/s之间,接触压力为1.33 MPa时,磨损率最小。通过扫描电子显微镜观察摩擦副磨损表层发现,在海水润滑下,SiC磨损并不明显,而PEEK450 FC30的磨损主要是以塑性涂抹为特征的粘着和SiC表面粗糙峰引起的机械犁耕。研究结果对水液压元件的选材具有十分重要的指导作用。  相似文献   

8.
The influence of only water addition on the hot metal forming process has not yet been reported in regard to tribological performance. In the present study, simulation tests were carried out on a pin-on-disc tribometer to evaluate the effects of water lubrication on the wear and friction behaviors of interstitial free (IF) steel sliding against different countersurface materials at 800°C in comparison with those in dry sliding. The opposing materials were selected as GCr15 steel and ceramic-based compounds including ZrO2, SiC, and Si3N4. It has been found that Si-based component–IF steel pairs exhibit the lowest wear losses despite achieving relatively high friction. Water addition adversely impairs the friction and wear characteristics on steel-steel tribopairs, whereas it shows insignificant effects on the pair involving ceramic-based components except ZrO2. Varying tribological responses can be found among different mated surfaces under water lubrication. X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy were utilized to examine the worn surface. The acting mechanism of water addition for different rubbing pairs was further discussed from the aspects of oxide tribochemistry.  相似文献   

9.
A diamond-like carbon (DLC) film exhibits excellent tribological properties. This type of film has an amorphous structure that is generally composed of hydrogen and carbon atoms, and it is the structure of sp2- and sp3-hybridized orbital carbon which brings about the extraordinary tribological properties of the DLC film. It is known that heating causes structural changes in a DLC film, and pre-heat treatment greatly affects the various properties of a DLC film. In this study, we focus on the effects of pre-heat treatment on the friction and wear properties of a hydrogenated DLC film and discuss the structural changes in the film. After pre-heat treatment, the tribological properties were evaluated using a ball-on-disk sliding tester. Our findings indicated that the friction and wear properties of the DLC film were improved by pre-heating up to 500 °C. An as-deposited DLC film had a friction coefficient of approximately 0.15, whereas it was approximately 0.03 for a film pre-heated at 500 °C. The structure of the DLC film was analyzed using micro-laser Raman spectroscopy. The analytic results of the Raman spectroscopy of the film surface showed that the G peak position had shifted toward a higher wave number. This result suggested that hydrogen had evolved from the DLC film because of pre-heat treatment. The half bandwidth of the G peak shifted toward a lower wave number with increases in the pre-heating temperature. This indicated that graphitization of the DLC film had been induced by pre-heat treatment. From these findings, we consider that the hydrogen evolution induced structural changes. Line analysis using micro-laser Raman spectroscopy was performed on a cross section of the pre-heated DLC film. The line analysis showed structural changes which were induced by hydrogen evolution, on the top of the DLC film. On the other hand, hydrogen evolution and graphitization were prevented inside the film, indicating that a gradient structure had been generated by pre-heat treatment. The low friction coefficient of the pre-heated DLC film was caused by graphitization of the DLC film surface. The graphite layer on the top of the film would induce lower shearing resistance at the sliding interface. This gradient structure of the DLC film plays an important role in improving the tribological properties of the pre-heated DLC film.  相似文献   

10.
为改善聚醚醚酮(PEEK)在矿井工况下的摩擦性能,选用纳米二氧化硅(SiO2)、二硫化钼(MoS2)和短切碳纤维(CF)为增强填料制备PEEK/SiO2/CF-MoS2复合材料,并探究PEEK/SiO2/CF-MoS2复合材料在不同工况条件下的滑动与滚动摩擦学性能;通过模拟滚轮罐耳在矿井环境下的运行方式,分析其磨损形貌和磨损机制。结果表明:PEEK/SiO2/CF-MoS2复合材料在不同载荷条件下均具有良好的减摩和耐磨特性;滑动摩擦在水介质工况下及滚动摩擦在干摩擦工况下,复合材料的摩擦因数和磨损率最低,其磨损机制均以磨粒磨损为主。与矿井常用的聚氨酯材料的对比,PEEK/SiO2/CF-MoS2复合材料的摩擦学性能更为优异。  相似文献   

11.
研究碳纤维/聚四氟乙烯(CF/PTFE)、玻璃纤维/聚四氟乙烯(GF/PTFE)复合材料与氮化硅陶瓷配副在海水环境下的摩擦学性能与润滑机制,分析滑动速度对摩擦副海水润滑性能的影响规律。结果表明:在海水润滑条件下,随着滑动速度的增加,PTFE、CF/PTFE、GF/PTFE材料与Si3N4陶瓷配副时的摩擦学性能均有明显改善,摩擦因数与磨损率均呈显著降低的趋势,其中CF/PTFE复合材料表现出更为优异的摩擦学性能,在1 000 r/min滑动速度下摩擦因数低至0.026。磨损表面表征结果表明,在海水润滑条件下,PTFE基复合材料在摩擦过程中由于摩擦化学反应生成了润滑膜,可为摩擦副提供良好的润滑和减磨作用,从而减少摩擦磨损行为的发生。  相似文献   

12.
Ocean tribology, a new research field of tribology, is currently being established and developed. The tribological behaviors of polyether ether ketone (PEEK), poly(phenyl p-hydroxybenzoate) (PHBA), polyimide (PI), and perfluoroethylene propylene copolymer (FEP) sliding against GCr15 and 316 steel rings under the lubrication of sea water were studied and compared with that under the lubrication of pure water. The results show that the friction and wear behaviors of a polymer under the lubrication of aqueous medium are not only related to the properties of polymer itself, but also to the corrosive effect and lubricating effect of the medium. When a polymer slid against GCr15 steel under sea water lubrication, the friction coefficient and wear rate of polymer were much larger than that under pure water lubrication because of indirect corrosive wear. However, when sliding against corrosion-resistant 316 steel, polymers PEEK, FEP, and PI exhibited lower coefficients of friction and wear rates under sea water lubrication, this was attributed to better lubricating effect of sea water as a result of the deposition of CaCO3 and Mg(OH)2 on the counterface. On the contrary, the friction coefficient and wear rate of PHBA sliding against 316 steel under sea water lubrication were larger than that under pure water lubrication, which may be related to the properties of PHBA itself.  相似文献   

13.
Z.F. Zhou  I. Bello  S.T. Lee 《Wear》2005,258(10):1589-1599
This paper describes the tribological performance of diamond-like carbon (DLC) coatings deposited on AISI 440C steel substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) process. A variety of analytic techniques were used to characterize the coatings, such as Raman spectroscopy, atomic force microscopy (AFM) and nano-indentation. The sliding wear and friction experiments were carried out by the conventional ball-on-disk tribometry against 100Cr6 steel counterbody at various normal loads (1-10 N) and sliding speeds (2-15 cm/s). All the wear tests were conducted under dry sliding condition in ambient air for a total rotation cycle of 1 × 105 (sliding distance ∼2.2 km). Surfaces of the coatings and the steel balls were examined before and after the sliding wear tests. The DLC coatings that had been tested all showed relatively low values of friction coefficient, in the range of 0.1-0.2 at a steady-state stage, and low specific wear rates (on the order of 10−8 mm3/Nm). It was found that higher normal loads or sliding speeds reduced the wear rates of the coatings. Plastic deformation became more evident on the coating surface during the sliding wear test at higher contact stresses. The friction-induced transformation of the coating surface into a graphite-like phase was revealed by micro-Raman analysis, and the flash temperature of the contact asperities was estimated. It was suggested that the structural transformation taking place within the wear tracks was mainly due to the formation of compact wear debris layer rather than the frictional heating effect. On the other hand, an adherent transfer layer (tribolayer) was formed on the counterface, which was closely related to the steady-state friction during sliding and the wear mechanisms. Fundamental knowledge combined with the present tribological study led to the conclusion that adhesive wear along with abrasion was probably the dominant wear mechanism for the DLC/steel sliding systems. Additionally, fatigue processes might also be involved in the wear of the coatings.  相似文献   

14.
Jianliang Li  Dangsheng Xiong 《Wear》2009,266(1-2):360-367
Nickel-based graphite-containing composites were prepared by powder metallurgy method. Their mechanical properties at room temperature and friction and wear properties from room temperature to 600 °C were investigated by a pin-on-disk tribometer with alumina, silicon nitride and nickel-based alloy as counterfaces. The effects of graphite addition amount, temperature, load, sliding speed and counterface materials on the tribological properties were discussed. The micro-structure and worn surface morphologies were analyzed by scanning electron microscope (SEM) attached with energy dispersive spectroscopy (EDS). The results show that the composites are mainly consisted of nickel-based solid solution, free graphite and carbide formed during hot pressing. The friction and wear properties of composites are all improved by adding 6–12 wt.% graphite while the anti-bending and tensile strength as well as hardness decrease after adding graphite. The friction coefficients from room temperature to 600 °C decrease with the increase of load, sliding speed while the wear rates increase with the increasing temperature, sliding speed. The lower friction coefficients and wear rates are obtained when the composite rubs against nickel-based alloy containing molybdenum disulfide. Friction coefficients of graphite-containing composites from room temperature to 600 °C are about 0.4 while wear rates are in the magnitude of 10?5 mm3/(N m). At high temperature, the graphite is not effective in lubrication due to the oxidation and the shield of ‘glaze’ layer formed by compacting back-transferred wear particles. EDS analysis of worn surface shows that the oxides of nickel and molybdenum play the main role of lubrication instead of graphite at the temperature above 400 °C.  相似文献   

15.
The carboxyl-functionalized multiwalled carbon nanotube (MWCNT-COOH) was achieved by grafting carboxyl (COOH) groups onto surfaces of MWCNTs. Then polyimide (PI)-based nanocomposites reinforced with MWCNTs-COOH and MWCNTs were prepared by in situ polymerization and the tribological behaviors of PI/MWCNTs-COOH and PI/MWCNT nanocomposites were studied under dry friction and seawater lubrication. The results showed that the incorporation of MWCNTs-COOH and MWCNTs could greatly improve the wear resistance of PI because of the lubricating effect of MWCNTs-COOH and MWCNTs. In additon, the PI/MWCNTs-COOH exhibited better tribological performance than the PI/MWCNTs under dry friction due to functionalization of MWCNTs. In addition, PI/MWCNTs-COOH nanocomposites presented better tribological properties under seawater lubrication than other conditions because of the excellent lubricating effect of seawater, especially when the content of MWCNTs-COOH was 0.7 wt%. Furthermore, the effects of applied load and sliding speed on the tribological behaviors of PI/MWCNTs-COOH nanocomposites were studied under seawater lubrication. It was found that 0.7 wt% PI/MWCNTs-COOH nanocomposites had the best friction reduction and antiwear properties when the applied load and sliding speed were 3 N and 0.26 m/s, respectively, under seawater lubrication.  相似文献   

16.
采用环块式摩擦磨损实验研究了一种新型摩擦材料在水润滑状态下不同载荷与转速对试样摩擦学性能的影响,并对比干摩擦条件下的摩擦学性能变化,借助磨损表面形貌观察分析其磨损机理。实验结果表明:水润滑条件下,摩擦系数随着载荷的增大而减小,随着转速的提高先增加后减小;磨损率随着载荷与转速的提高都减小。相同载荷与转速下,干摩擦时磨损机理以磨粒磨损和黏着磨损为主,而水润滑条件下水形成边界润滑,磨损机理以磨粒磨损和轻微的黏着磨损为主;水润滑条件下摩擦系数和磨损率均低于干摩擦,主要是由于水起到了润滑和冷却的作用,阻止了转移膜的形成,并在材料表面形成水膜起到了边界润滑的作用。  相似文献   

17.
Ionic Liquid Lubrication Effects on Ceramics in a Water Environment   总被引:1,自引:0,他引:1  
Phillips  B.S.  Zabinski  J.S. 《Tribology Letters》2004,17(3):533-541
Ionic liquids were studied to determine their effectiveness as boundary lubricant additives for water. The chemical and tribochemical reactions that govern their behavior were probed to understand lubrication mechanisms. Under water lubricated conditions, silicon nitride ceramics are characterized by a running-in period of high friction, during which time the surface is modified causing a dramatic decrease in friction and wear. Two mechanisms have been proposed to explain the friction and wear behavior. Si3N4 sliding against itself may result in tribochemical reactions that form a hydrated silicon oxide layer on the surface of the sliding contact. This film has been suggested to mediate friction and wear. Others have suggested that tribo-dissolution of SiO2 results in an ultra smooth surface and after a running-in period of high wear, the lubrication mode becomes hydrodynamic. The goal of this study was to examine the effects that ionic liquids have on the friction and wear properties of Si3N4, in particular their effects on the running-in period. Tribological properties were evaluated using pin-on-disk and reciprocating tribometers. The tribological conditions of the tests were selected to produce mixed/hydrodynamic lubrication. The relative lubrication mode between mixed and hydrodynamic was controlled by the initial surface roughness. Solutions containing 2 wt% ionic liquids were produced for testing purposes. Chemical analysis of the sliding surfaces was accomplished with X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). The test specimens were 1 in diameter Si3N4 disks sliding against 1/4 in Si3N4 balls. The addition of ionic liquids to water resulted in dramatically reduced running-in periods for silicon nitride from thousands to the hundreds of cycles. Proposed mechanisms include the formation of BFx and PFx films on the surface and creation of an electric double layer of ionic liquid.  相似文献   

18.
HIP-Si3N4陶瓷/45#钢副干摩擦和水润滑下摩擦学性能   总被引:2,自引:0,他引:2  
利用MPX-2000型盘销式摩擦磨损试验机考察了HIP—Si3N4陶瓷/45^#钢副在干摩擦和水润滑下的摩擦磨损性能;用扫描电子显微镜观察了试件表面的磨损状态;采用X射线电子能谱仪分析了摩擦表面的化学成分:结果表明:干摩擦条件下,HIP—Si3N4陶瓷的磨损速率比45^#钢小,45^#钢发生粘着磨损,HIP—Si3N4陶瓷发生了脆性断裂和脱落;水润滑条件下,摩擦表面产生了Si(OH)4反应膜,降低了磨损,主要是化学腐蚀磨损。  相似文献   

19.
在不同工况下研究半金属基粉末摩擦片与淬火45#钢配副时,载荷和转速对其摩擦磨损性能的影响,并分析其磨损机制。结果表明,在油润滑和水润滑下,半金属基摩擦片高速下的磨损量要明显低于低速下的磨损量,而干摩擦下其高载高速下的磨损要高于高载低速时的磨损量。油润滑下随载荷的增大,半金属基摩擦片的摩擦因数逐渐升高;水润滑下随载荷的增大,高速时摩擦因数先增大后减小,低速时则逐渐降低;干摩擦下随载荷的增大,高速时摩擦因数呈现出先升高后降低再升高的趋势,低速时则先升高后降低。干摩擦时摩擦面十分粗糙,有比较明显的沟状磨痕和硬质颗粒脱落后残留的凹坑;而水润滑和油润滑时摩擦面较为光滑。  相似文献   

20.
Titanium-containing diamond-like carbon (Ti-DLC) coatings were deposited on steel with a close-field unbalanced magnetron sputtering in a mixed argon/acetylene atmosphere. The morphology and structure of Ti-DLC coatings were investigated by scanning electron microscopy, transmission electron microscopy, atomic force microscopy and Raman spectroscopy. Nanoindentation, nanoscratch and unlubricated wear tests were carried out to evaluate the hardness, adhesive and tribological properties of Ti-DLC coatings. Electron microscopic observations demonstrated the presence of titanium-rich nanoscale regions surrounded by amorphous carbon structures in Ti-DLC coating. The Ti-DLC coatings exhibit friction coefficients of 0.12–0.25 and wear rates of 1.82 × 10?9 to 4.29 × 10?8 mm3/Nm, depending on the counterfaces, sliding speed and temperature. The Ti-DLC/alumina tribo-pair shows a lower friction coefficient than the Ti-DLC/steel tribo-pair under the identical wear conditions. Increasing the test temperature from room temperature to 200 °C reduces the coefficient of friction and, however, clearly increases the wear rate of Ti-DLC coatings. Different wear mechanisms, such as surface polishing, delamination and tribo-chemical reactions, were found in the tribo-contact areas, depending on different wear conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号