首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
A ball cratering test has been used to investigate the abrasive wear of high speed steels with different volume fraction and size of primary carbides. Three different abrasives, SiC, Al2O3 and ZrO2 were used. Wear mechanisms were investigated by scanning electron microscopy (SEM). A good correlation between the hardness of the abrasives and the abrasive wear coefficient was found. Higher abrasive wear resistance was determined for steels containing coarser primary carbides compared to those without or with smaller carbides. The most pronounced difference in abrasive wear resistance was found for Al2O3 abrasives. This indicates that in ball cratering the abrasive medium has to be chosen properly, i.e. with a hardness adjusted to those of both primary carbides and martensitic matrix, to obtain results suitable to rank high speed steels with respect to abrasion resistance.  相似文献   

2.
Jos Rendn  Mikael Olsson 《Wear》2009,267(11):2055-2061
The aim of the present study is to evaluate the abrasive wear resistance of some potential abrasion resistant steels exposed to different types of abrasive wear contact conditions typical of mining and transportation applications. The steels investigated, include a ferritic stainless steel, a medium alloyed ferritic carbon steel and a medium alloyed martensitic carbon steel.The abrasive wear resistance of the steels was evaluated using two different laboratory test methods, i.e. pin-on-disc testing and paddle wear testing that expose the materials to sliding abrasion and impact abrasion, respectively. All tests were performed under dry conditions in air at room temperature. In order to evaluate the tribological response of the different steels post-test characterization of the worn surfaces were performed using optical surface profilometry, scanning electron microscopy and energy dispersive X-ray spectroscopy. Besides, characterization of the wear induced sub-surface microstructure was performed using optical microscopy.The results show that depending on the abrasive conditions a combination of high hardness and toughness (fracture strain) is of importance in order to obtain a high wear resistance. In the pin-on-disc test (i.e. in sliding abrasion) these properties seem to be controlled by the as-rolled microstructure of the steels although a thin triboinduced sub-surface layer (5–10 μm in thickness) may influence the results. In contrast, in the paddle wear test (i.e. in impact abrasion), resulting in higher forces acting perpendicular to the surface by impacting stones, these properties are definitely controlled by the properties of the active sub-surface layer which also contains small imbedded stone fragments.  相似文献   

3.
Wear testing equipment and tests used in research laboratories are often miniature or simplified versions of real applications. For example standardized ASTM dry sand rubber wheel abrasion test G 65 and pin abrasion test G 132 are widely used to study materials’ abrasion wear resistance. The test results, however, do not always correlate too well with the results obtained from real wear conditions. One reason for this is, for example, that in the crushing applications of mining industry the abrasive size is usually much larger than that used in the laboratory wear tests. To study the abrasive wear caused by larger size gravel, new three-body abrasion test equipment was therefore constructed. The equipment uses the pin-on-disk principle with free abrasive particles of sizes up to 10 mm. During the test the pin is repeatedly pressed against a fixed amount of abrasive that is rotating with the disk having confining walls. As the pin is prevented from touching the counterbody, only the abrasive acts as the wearing agent.Three steels of different hardnesses were cross-tested as pin–disk pairs and as pins against a rubber disk using three igneous rock gravels with different crushability properties as abrasives. The wear was measured as mass loss from both the pin and the disk, and the rock comminution was measured by sieving. The results indicate that the mechanism of wear is greatly affected by the hardness of the counterbody. When using large size abrasives, the rate of comminution is also a very important factor that can significantly affect the wear test results.  相似文献   

4.
Machinery and equipment used in abrasive environments, such as the mining industry, suffer from severe wear. In order to understand wear and to prolong the life time of the machinery, it is important to understand how materials respond to wear depending on the environmental and tribological conditions imposed.This paper exposes a comparative study between the influence of two abrasive environments (dry and slurry) on hard particle coatings and steels. To study this, the 3-body wear behaviour was evaluated in a dry environment using a continuous abrasion test (CAT) and in a slurry environment using a slurry steel wheel abrasion test (SSWAT) method. Both tests are capable of experimentally modelling the high stress wear at 45 N and 216 N, using quartz sand as an abrasive. The tests were performed on two types of coatings processed by sintering and hardfacing and martensitic steel was used as a reference. The wear was indicated as volume loss by measuring the samples before and after the tests. Furthermore, the specific wear energy was calculated in order to have a fundamental understanding about the material's response to wear. A correlation between the wear rate and the particle brakeage index (PBI) was done for the dry conditions using different loads, in order to explain the interdependence between the two parameters and the change in the wear mechanism between the two loads. The influence of load on the wear of the materials showed different wear mechanisms on coatings compared to the steel in the same environmental conditions. However, a change in wear mechanism at different load levels was observed, which might be directly dependent on the change of the particle's motion from sliding to rolling combined with the change in their shape and size. The results showed that the need to study the influence of different abrasive conditions on the material wear is crucial in order to improve the lifetime and the cost efficiency of the machinery used in such environments. The hard-particle coatings showed comparatively low wear rates promising a great potential in improving the lifetime of industrial equipments in different environments.  相似文献   

5.
E. Albertin  A. Sinatora 《Wear》2001,250(1-12):492-501
The effect of carbide volume fraction from 13 to 41% on the wear resistance of high chromium cast irons was evaluated by means of ball mill testing. Martensitic, pearlitic and austenitic matrices were evaluated.

The 50-mm diameter balls were tested simultaneously in a 40 cm diameter ball mill. Hematite, phosphate rock and quartz sand were wet ground. The tests were conducted for 200 h.

Quartz sand caused the highest wear rates, ranging from 6.5 to 8.6 μm/h for the martensitic balls, while the wear rates observed for the phosphate rock ranged from 1.4 to 2.9 μm/h.

Increasing the carbide volume fraction resulted in decreased wear rates for the softer abrasives. The almost complete protection of the matrix by carbides in eutectic microstructures caused the eutectic alloy to present the best performance against hematite or phosphate rock. The opposite effect was observed for the quartz sand. The quartz abrasive rapidly wears out the matrix, continuously exposing and breaking carbide branches. A martensitic steel presented the best performance against the quartz abrasive.

With phosphate rock, the wear rate of 30% carbide cast irons increased from 1.46 to 2.84 and to 6.39 μm/h as the matrix changed, respectively, from martensitic to austenitic and to pearlitic. Wear profiles of worn balls showed that non-martensitic balls presented deep subsurface carbide cracking, due to matrix deformation. Similar behavior was observed in the tests with the other abrasives.

In pin-on-disc tests, austenitic samples performed better than the martensitic ones. This result shows that pin tests in the presence of retained austenite can be misleading.  相似文献   


6.
Fe-based hardfacing alloys are widely used to protect machinery equipment exposed to different loading situations where abrasives play a dominant role in restricting lifetime of tools. Wear at elevated temperatures is superposed by the effect of oxidation of the wearing surface. In view of the above, two hardfacing alloys based on Fe-Cr-C incorporating Nb, Mo and B to ensure improved performances at elevated temperature were deposited onto mild steel under optimised gas metal arc welding (GMAW) condition. 2-body erosive wear behaviour was evaluated from room temperature up to 650 °C under 30° and 90° impact angle. For 3-body impact/abrasion conditions tests were done with a specially designed cyclic impact abrasion tester (CIAT) at room temperature and 600 °C. The wear behaviour of the hardfacings was compared with austenitic stainless steel. Results indicate that 2-body erosive wear rate of the hardfacing increases with test temperature and with increase in impact angle, whereas wear behaviour of the austenitic stainless steel is non-sensitive to the testing temperature at normal impact. In 3-body impact abrasion testing similar behaviour can be seen; cyclic tests in CIAT at enhanced temperatures result in breaking of coarse carbides, whereas wear mechanisms of the austenitic steel result in massive abrasion and formation of a mechanically mixed layer (MML).  相似文献   

7.
Wear of cast chromium steels with TiC reinforcement   总被引:2,自引:0,他引:2  
. N. Do an  J. A. Hawk  J. H. Tylczak 《Wear》2001,250(1-12):462-469
Wear resistance of a series of new titanium carbide reinforced cast chromium steels was investigated under various wear conditions. The steels which were melted in a vacuum induction furnace contained 12 Cr, 3–5 Ti, 1–2 C in weight percent. Microstructure of these materials was characterized using scanning electron microscopy, light optical microscopy, and X-ray diffraction. Microstructure of steels consisted of TiC phase dispersed in a martensitic matrix. High-stress and low-stress abrasion tests, and an erosion test, were utilized to understand the wear behavior of these materials under different environments. The steels were tested in as-cast and heat treated conditions. Wear rates of the cast Cr/TiC steels were compared to those of an AISI type 440C steel and P/M composites reinforced with TiC.  相似文献   

8.
The low-stress three body abrasion behaviour of a range of steels was investigated. The tests were carried out in a rubber wheel tester (according to ASTM G65-94, reapproved in 2000) at room temperature. The abrasive particles used were angular alumina particles of four different sizes. The results showed that, in general, the smaller particles (50 and 125 μm average size) caused more damage. With these particles, observations of surface morphology indicated a more intense cutting and ploughing action, leading to more damage, whereas bigger particles i.e. larger 250 and 560 μm particles produced less damage, and their action involved more plastic deformation type wear. The 304 SS had a lower abrasion resistance than the 310 SS. For the austentic and ferritic steels the subsurface deformation was larger for impact with the coarser particles. Variations in substrate hardness had no effect on the abrasive behaviour observed. On the whole, the hardest steel (mild steel in martensitic condition) showed the higher extent of damage, irrespective of particle size.  相似文献   

9.
A study was undertaken to obtain design data for possible damage scenarios for a planned deep-sea power cable between two Hawaiian islands. The combined results for abrasion and corrosion-erosion of cold drawn 0.85% C-steel armor wire in seawater against seabottom rocks indicate that failure of the proposed design in the desired design life due to these mechanisms is of only intermediate probability. The results also have some general applicability to abrasive wear by and of natural media. The steel and the rock wear simultaneously, with the rock wearing about 150 times faster than the steel. The results can be explained by considering the armor wire as a hard tool causing wear of the rock while abrasion of the steel is caused solely by the hard olivine grains which constitute 6 percent of the rock. Both adjusted wear rates are comparable to laboratory data on abrasion by hard abrasives.  相似文献   

10.
The resistance to three-body abrasion of some common metals, mainly a tool steel and an aluminum alloy, both heat treated to different hardnesses, has been evaluated in two different tribosystems. The different materials have been tested against each other in different combinations to study the influence of the relative hardness of the two bodies on the wear rate in three-body abrasion. In all tests the abrasives have been much harder than the metals. It was observed that the wear rate of asolid body in three-body abrasion strongly depends on the hardness of the counterbody. In three-body abrasion a material may, under some circumstances, be most strongly worn if the counterbody is softer than the metal to be worn. This is because the abrasive particles can be embedded in the softer surface and groove the harder one. However, many parameters of the tribosystem influence the embedding of particles and the wear rate in three-body abrasion. It is shown that the size of the area in which the abrasives are embedded compared to the size of the wear scar in the counterbody as well as the smoothness of the surfaces are of importance.  相似文献   

11.
A set of five material specimens have been tested on five abrasives, some of which are harder, some softer than the materials, using the dynamic abrasive wear tester. Characteristics of selected wear debris have been observed by sem and wear debris of 9Cr2Mo steel analysed by Mossbauer spectroscopy. The test results show three wear mechanisms operating during abrasion: microcutting, plougging deformation and brittle fragmentation. Different abrasives formed different constituents of wear debris due to dissimilar wear conditions. Softer abrasive tended to form more ploughing debris, although some typical microcutting chips were produced. Crushing strength of abrasive may be an important factor in addition to hardness of abrasive. The microstructure of 9Cr2Mo steel wear debris has been changed by abrasion heat; this temperature could be estimated by Mossbauer spectroscopy.  相似文献   

12.
R.B. Gundlach  J.L. Parks 《Wear》1978,46(1):97-108
The resistance to abrasive wear was determined for a series of alloyed white cast irons in a high stress abrasion test which utilizes a specimen in sliding contact with bonded abrasives. These were conducted on silicon carbide, alumina and two sizes of garnet abrasive.The results indicate that the hardness, or type, of abrasive used in the test significantly influenced the wear rate of white irons, i.e. the rate of wear increased with increasing hardness of the abrasive. Also, the results indicate that the type of abrasive used in the test was a significant factor in ranking white irons for resistance to high stress abrasion. When tested on silicon carbide or alumina abrasive, as-cast austenitic irons exhibited lower rates of wear than heat treated martensitic irons; when tested on garnet, an abrasive of lower hardness, those irons with martensitic matrix microstructures exhibited the same or less wear than irons with austenitic matrix microstructures. It was also evident that heat treated irons with martensitic matrix microstructures exhibited varying degrees of resistance to abrasive wear depending on cooling rates and alloy content.  相似文献   

13.
Nitinol (NiTi), a nearly equiatomic nickel-titanium alloy is known for its unique shape memory and superelastic properties, which result from martensitic transformations. It is the material of choice for numerous biomedical applications such as endovascular stents, vena cava filters, dental files and guidewires for non-invasive surgery, etc. Micro-scale abrasion tests (MSATs) have been performed on the NiTi shape memory alloy, so as to evaluate the influence of different commercial abrasives such as silicon carbide, alumina and glass on the wear behaviour. The aim of the work was the selection of the most effective abrasive for cleaning the inner surface of laser-cut cardiovascular stents. Abrasive particles have been characterised by X-ray diffraction, SEM and EDS before and after MSATs. Worn surfaces have been studied by stylus profilometry, SEM and atomic force microscopy. The effect of abrasive particle hardness, size and angularity on the wear behaviour has been evaluated and discussed.  相似文献   

14.
The aim of this investigation has been to further the understanding of the contribution given by the primary carbides to the abrasive and erosive wear resistance of six HSS's, and to evaluate different test methods. With abrasives significantly harder than the primary carbides of the HSS's, two- and three-body abrasion rates showed only small variations with primary carbide volume fraction, size and type. However, using abrasives/erodants softer than the carbides the qualitative results were similar for the two- and three-body abrasion tests and for the erosion test, with the wear resistance increasing with the volume fraction primary carbides.  相似文献   

15.
本文首先在销盘式二体磨损试验机上,使用二种不同硬度的磨料对三种基体状态的28Cr铸铁耐磨性进行了比较,结果表明具有铸态奥氏体基体的28Cr铸铁具有良好的耐磨性;进而在腐蚀磨损试验机上对铸态28Cr铸铁与马氏体15Cr1MolCu铸铁在不同PH值介质中的耐腐蚀磨损性能进行了对比,考察了在什么介质条件下28Cr铸铁取代15Cr铸铁才是合理的以及28Cr铸铁作为耐腐蚀磨损材料的成份选择原则。另外还对不同状态及成份的28Cr铸铁的机械性能进行了测定,为工程上的实际使用提供了依据。  相似文献   

16.
This paper focuses on the tribological characterization of new martensitic stainless steels by two different tribological methods (scratch and dry wear tests) and their comparison to the austenitic standard stainless steel AISI 316L. The scratch test allows obtaining critical loads, scratch friction coefficients, scratch hardness and specific scratch wear rate, and the dry wear test to quantify wear volumes. The damage has been studied by ex situ scanning electron microscopy. Wear resistance was related to the hardness and the microstructure of the studied materials, where martensitic stainless steels exhibit higher scratch wear resistance than the austenitic one, but higher hardness of the martensitic alloys did not give better scratch resistance when comparing with themselves. It has been proved it is possible to evaluate the scratch wear resistance of bulk stainless steels using scratch test. The austenitic material presented lower wear volume than the martensitic ones after the dry wear test due to phase transformation and the hardening during sliding.  相似文献   

17.
Wear behaviour of alumina based ceramic cutting tools on machining steels   总被引:4,自引:1,他引:4  
The advanced ceramic cutting tools have very good wear resistance, high refractoriness, good mechanical strength and hot hardness. Alumina based ceramic cutting tools have very high abrasion resistance and hot hardness. Chemically they are more stable than high-speed steels and carbides, thus having less tendency to adhere to metals during machining and less tendency to form built-up edge. This results in good surface finish and dimensional accuracy in machining steels. In this paper wear behaviour of alumina based ceramic cutting tools is investigated. The machining tests were conducted using SiC whisker reinforced alumina ceramic cutting tool and Ti[C,N] mixed alumina ceramic cutting tool on martensitic stainless steel-grade 410 and EN 24 steel work pieces. Flank wear in Ti[C,N] mixed alumina ceramic cutting tool is lower than that of the SiC whisker reinforced alumina cutting tool. SiC whisker reinforced alumina cutting tool exhibits poor crater wear resistance while machining. Notch wear in SiC whisker reinforced alumina cutting tool is lower than that of the Ti[C,N] mixed alumina ceramic cutting tool. The flank wear, crater wear and notch wear are higher on machining martensitic stainless steel than on machining hardened steel. In summary Ti[C,N] mixed alumina cutting tool performs better than SiC whisker reinforced alumina cutting tool on machining martensitic stainless steel.  相似文献   

18.
Three types of carbon/carbon composites were fabricated using pitch as matrix material. Performance of these composites was evaluated under continuous impact abrasion tests (CIAT). Towards this purpose, a novel testing equipment was designed and developed at AC2T. Tests were carried out at room temperature and 500 °C. The angle of impact was chosen to be 45° and 90°. Analysis of tribological performance was carried out by mass loss. Characterization of the worn surface was done by means of scanning electron microscopy (SEM) and optical 3D profilometry. In this work, it was shown that wear rates are higher for 45° impact angle compared to 90° for all composites investigated. Fibre debonding and fibre pull out was observed to be the dominating wear mechanisms for these composites during CIAT procedure under normal impact abrasion. Removal of chunk of material contributes to wear under oblique impact abrasion.  相似文献   

19.
J. Suchnek  V. Kuklík 《Wear》2009,267(11):2100-2108
Abrasive wear is responsible for intensive degradation of machine parts or tools. This process starts as an interaction between hard, mostly mineral, particles and the working surface. Methods of increasing the lifetime are based on application of abrasion resistant materials or creation of hard, wear-resistant surface layers or coatings on the surfaces of machine parts or tools. Carbon and low-alloy steels with different types of thermochemical treatment (case hardening, nitriding) are used in cases of low abrasion. Another method of increasing lifetime is the application of ledeburitic steels. The wear resistance of these steels depends on their chemical composition and heat treatment. The results of laboratory tests of thermochemically treated steels, heat-treated ledeburitic chromium steels and high-speed steels show the effect of the microstructure of these steels on their abrasion resistance. Abrasion resistance of carburized low-alloy steels is on the same level as in high-carbon structural and tool steels. In ledeburitic chromium steel maximum abrasion resistance was achieved by quenching from 1100 °C whilst in ledeburitic chromium–vanadium steel the optimum quenching temperature was 1150 °C. Growing abrasion resistance was caused by increasing amounts of retained austenite.  相似文献   

20.
Fe–C–Mo and Fe–C–Cr steels were sintered by PM processes carried out using different values of temperature and pressure, leading to different microstructures and density values. Flat specimens were submitted to tribological tests in order to evaluate their behaviour under both dry sliding and abrasive wear conditions. A flat-on-cylinder tribometer was used for the sliding tests, while a micro-scale ball cratering device was used for the abrasion tests. The dry sliding wear resistance of the PM steels was mainly influenced by the composition and sintering conditions. In this regard, the best behavior was observed for the more hardenable Fe–C–Mo steels with higher Mo content, sintered under conditions giving rise to bainitic microstructures. A determining role was also played by the porosity content and pore shape: reduction in porosity (obtained by increasing the sintering temperature and the compacting pressure), as well as an increase in pore roundness, led to a significant improvement in the resistance to sliding wear. A mild oxidative wear regime were observed for all the sintered steels under relatively low values of the applied load, while an increase of the applied load led to a delamination wear regime. The resistance to abrasive wear was low for all the tested steels, irrespective of composition and sintering cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号