首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We prove lower bounds on the randomized two-party communication complexity of functions that arise from read-once boolean formulae. A read-once boolean formula is a formula in propositional logic with the property that every variable appears exactly once. Such a formula can be represented by a tree, where the leaves correspond to variables, and the internal nodes are labeled by binary connectives. Under certain assumptions, this representation is unique. Thus, one can define the depth of a formula as the depth of the tree that represents it. The complexity of the evaluation of general read-once formulae has attracted interest mainly in the decision tree model. In the communication complexity model many interesting results deal with specific read-once formulae, such as DISJOINTNESS and TRIBES. In this paper we use information theory methods to prove lower bounds that hold for any read-once formula. Our lower bounds are of the form n(f)/cd(f), where n(f) is the number of variables and d(f) is the depth of the formula, and they are optimal up to the constant in the base of the denominator.  相似文献   

3.
We present the first approach to deduce lower bounds for (worst-case) runtime complexity of term rewrite systems (TRSs) automatically. Inferring lower runtime bounds is useful to detect bugs and to complement existing methods that compute upper complexity bounds. Our approach is based on two techniques: the induction technique generates suitable families of rewrite sequences and uses induction proofs to find a relation between the length of a rewrite sequence and the size of the first term in the sequence. The loop detection technique searches for “decreasing loops”. Decreasing loops generalize the notion of loops for TRSs, and allow us to detect families of rewrite sequences with linear, exponential, or infinite length. We implemented our approach in the tool AProVE and evaluated it by extensive experiments.  相似文献   

4.
5.
The determinantal complexity of a polynomial f(x 1,x 2,…,x n ) is the minimum m such that f=det  m (L(x 1,x 2,…,x n )), where L(x 1,x 2,…,x n ) is a matrix whose entries are affine forms in the x i s over some field $\mbox {$\mbox {.  相似文献   

6.
A method is proposed for obtaining the lower bounds of data complexity of statistical attacks on block or stream ciphers. The method is based on the Fano inequality and, unlike the available methods, doesn’t use any asymptotic relations, approximate formulas or heuristic assumptions about the considered cipher. For a lot of known types of attacks, the obtained data complexity bounds have the classical form. For other types of attacks, these bounds allow us to introduce reasonable parameters that characterize the security of symmetric cryptosystems against these attacks.  相似文献   

7.
Capturing propositional logic, constraint satisfaction problems and systems of polynomial equations, we introduce the notion of systems with finite instantiation by partial assignments, fipa-systems for short, which are independent of special representations of problem instances, but which are based on an axiomatic approach with instantiation (or substitution) by partial assignments as the fundamental notion. Fipa-systems seem to constitute the most general framework allowing for a theory of resolution with nontrivial upper and lower bounds. For every fipa-system we generalise relativised hierarchies originating from generalised Horn formulas [14,26,33,43], and obtain hierarchies of problem instances with recognition and satisfiability decision in polynomial time and linear space, quasi-automatising relativised and generalised tree resolution and utilising a general “quasi-tight” lower bound for tree resolution. And generalising width-restricted resolution from [7,14,25,33], for every fipa-system a (stronger) family of hierarchies of unsatisfiable instances with polynomial time recognition is introduced, weakly automatising relativised and generalised full resolution and utilising a general lower bound for full resolution generalising [7,17,25,33].  相似文献   

8.
Upper and Lower Bounds for Selection on the Mesh   总被引:1,自引:0,他引:1  
A distance-optimal algorithm for selection on the mesh has proved to be elusive, although distance-optimal algorithms for the related problems of routing and sorting have recently been discovered. In this paper we explain, using the notion of adaptiveness, why techniques used in the currently best selection algorithms cannot lead to a distance-optimal algorithm. For worst-case inputs we apply new techniques to improve the previous best upper bound of 1.22n of Kaklamanis et al. [7] to 1.15n . This improvement is obtained in part by increasing the adaptiveness of previous algorithms. Received May 25, 1995; revised June 1, 1996.  相似文献   

9.
10.
k-Decision lists and decision trees play important roles in learning theory as well as in practical learning systems.k-Decision lists generalize classes such as monomials,k-DNF, andk-CNF, and like these subclasses they are polynomially PAC-learnable [R. Rivest,Mach. Learning2(1987), 229–246]. This leaves open the question of whetherk-decision lists can be learned as efficiently ask-DNF. We answer this question negatively in a certain sense, thus disproving a claim in a popular textbook [M. Anthony and N. Biggs, “Computational Learning Theory,” Cambridge Univ. Press, Cambridge, UK, 1992]. Decision trees, on the other hand, are not even known to be polynomially PAC-learnable, despite their widespread practical application. We will show that decision trees are not likely to be efficiently PAC-learnable. We summarize our specific results. The following problems cannot be approximated in polynomial time within a factor of 2logδ nfor anyδ<1, unlessNPDTIME[2polylog n]: a generalized set cover,k-decision lists,k-decision lists by monotone decision lists, and decision trees. Decision lists cannot be approximated in polynomial time within a factor ofnδ, for some constantδ>0, unlessNP=P. Also,k-decision lists withl0–1 alternations cannot be approximated within a factor logl nunlessNPDTIME[nO(log log n)] (providing an interesting comparison to the upper bound obtained by A. Dhagat and L. Hellerstein [in“FOCS '94,” pp. 64–74]).  相似文献   

11.
Problems of Information Transmission - We refine a lower bound on the spectrum of a binary code. We give a simple derivation of the known bound on the undetected error probability of a binary code.  相似文献   

12.
In this paper we introduce and illustrate non-trivial upper and lower bounds on the learning curves for one-dimensional Guassian Processes. The analysis is carried out emphasising the effects induced on the bounds by the smoothness of the random process described by the Modified Bessel and the Squared Exponential covariance functions. We present an explanation of the early, linearly-decreasing behavior of the learning curves and the bounds as well as a study of the asymptotic behavior of the curves. The effects of the noise level and the lengthscale on the tightness of the bounds are also discussed.  相似文献   

13.
In this paper we study a Bayesian or average-case model of concept learning with a twofold goal: to provide more precise characterizations of learning curve (sample complexity) behavior that depend on properties of both the prior distribution over concepts and the sequence of instances seen by the learner, and to smoothly unite in a common framework the popular statistical physics and VC dimension theories of learning curves. To achieve this, we undertake a systematic investigation and comparison of two fundamental quantities in learning and information theory: the probability of an incorrect prediction for an optimal learning algorithm, and the Shannon information gain. This study leads to a new understanding of the sample complexity of learning in several existing models.  相似文献   

14.
15.
The coloured Tutte polynomial by Bollobás and Riordan is, as a generalization of the Tutte polynomial, the most general graph polynomial for coloured graphs that satisfies certain contraction-deletion identities. Jaeger, Vertigan, and Welsh showed that the classical Tutte polynomial is #P-hard to evaluate almost everywhere by establishing reductions along curves and lines.  相似文献   

16.
We consider the management of FIFO buffers for network switches providing differentiated services. In each time step, an arbitrary number of packets arrive and only one packet can be sent. The buffer can store a limited number of packets and, due to the FIFO property, the sequence of sent packets has to be a subsequence of the arriving packets. The differentiated service model is abstracted by attributing each packet with a value according to its service level. A buffer management strategy can drop packets, and the goal is to maximize the sum of the values of sent packets. For only two different packet values, we introduce the account strategy and prove that this strategy achieves an optimal competitive ratio of if the buffer size tends to infinity and an optimal competitive ratio of for arbitrary buffer sizes. For general packet values, the simple preemptive greedy strategy (PG) is studied. We show that PG achieves a competitive ratio of which is the best known upper bound on the competitive ratio of this problem. In addition, we give a lower bound of on the competitive ratio of PG which improves the previously known lower bound. As a consequence, the competitive ratio of PG cannot be further improved significantly. Supported by the DFG grant WE 2842/1. A preliminary version of this paper appeared in Proceedings of the 14th Annual European Symposium on Algorithms (ESA), 2006.  相似文献   

17.
K. Kalpakis  Y. Yesha 《Algorithmica》1999,23(2):159-179
We find, in polynomial time, a schedule for a complete binary tree directed acyclic graph (dag) with n unit execution time tasks on a linear array whose makespan is optimal within a factor of 1+o(1) . Further, given a binary tree dag T with n tasks and height h , we find, in polynomial time, a schedule for T on a linear array whose makespan is optimal within a factor of 5 + o(1) . On the other hand, we prove that explicit lower and upper bounds on the makespan of optimal schedules of binary tree dags on linear arrays differ at least by a factor of 1+ . We also find, in polynomial time, schedules for bounded tree dags with n unit execution time tasks, degree d , and height on a linear array which are optimal within a factor of 1+o(1) , this time under the assumption of links with unlimited bandwidth. Finally, we compute an improved upper bound on the makespan of an optimal schedule for a tree dag on the architecture independent model of Papadimitriou and Yannakakis [14], provided that its height is not too large. Received January 21, 1997; revised June 5, 1997.  相似文献   

18.
We derive general bounds on the complexity of learning in the statistical query (SQ) model and in the PAC model with classification noise. We do so by considering the problem of boosting the accuracy of weak learning algorithms which fall within the SQ model. This new model was introduced by Kearns to provide a general framework for efficient PAC learning in the presence of classification noise. We first show a general scheme for boosting the accuracy of weak SQ learning algorithms, proving that weak SQ learning is equivalent to strong SQ learning. The boosting is efficient and is used to show our main result of the first general upper bounds on the complexity of strong SQ learning. Since all SQ algorithms can be simulated in the PAC model with classification noise, we also obtain general upper bounds on learning in the presence of classification noise for classes which can be learned in the SQ model.  相似文献   

19.
Bounding the price of stability of undirected network design games with fair cost allocation is a challenging open problem in the Algorithmic Game Theory research agenda. Even though the generalization of such games in directed networks is well understood in terms of the price of stability (it is exactly H n , the n-th harmonic number, for games with n players), far less is known for network design games in undirected networks. The upper bound carries over to this case as well while the best known lower bound is 42/23≈1.826. For more restricted but interesting variants of such games such as broadcast and multicast games, sublogarithmic upper bounds are known while the best known lower bound is 12/7≈1.714. In the current paper, we improve the lower bounds as follows. We break the psychological barrier of 2 by showing that the price of stability of undirected network design games is at least 348/155≈2.245. Our proof uses a recursive construction of a network design game with a simple gadget as the main building block. For broadcast and multicast games, we present new lower bounds of 20/11≈1.818 and 1.862, respectively.  相似文献   

20.
DPLL (for Davis, Putnam, Logemann, and Loveland) algorithms form the largest family of contemporary algorithms for SAT (the propositional satisfiability problem) and are widely used in applications. The recursion trees of DPLL algorithm executions on unsatisfiable formulas are equivalent to treelike resolution proofs. Therefore, lower bounds for treelike resolution (known since the 1960s) apply to them. However, these lower bounds say nothing about the behavior of such algorithms on satisfiable formulas. Proving exponential lower bounds for them in the most general setting is impossible without proving PNP; therefore, to prove lower bounds, one has to restrict the power of branching heuristics. In this paper, we give exponential lower bounds for two families of DPLL algorithms: generalized myopic algorithms, which read up to n 1−ε of clauses at each step and see the remaining part of the formula without negations, and drunk algorithms, which choose a variable using any complicated rule and then pick its value at random. Extended abstract of this paper appeared in Proceedings of ICALP 2004, LNCS 3142, Springer, 2004, pp. 84–96. Supported by CCR grant CCR-0324906. Supported in part by Russian Science Support Foundation, RAS program of fundamental research “Research in principal areas of contemporary mathematics,” and INTAS grant 04-77-7173. §Supported in part by INTAS grant 04-77-7173.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号