首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A natural circulation evaluation methodology has been developed to ensure the safety of a sodium-cooled fast reactor (SFR) of 1500 MW adopting the natural circulation decay heat removal system (NC-DHRS). The methodology consists of a one-dimensional safety analysis which can evaluate the core hot spot temperature taking into account the temperature flattening effect in the core, a three-dimensional fluid flow analysis which can evaluate the thermal-hydraulics for local convections and thermal stratifications in the primary system and DHRS, and a statistical safety evaluation method for the hot spot temperature in the core. The safety analysis method and the three-dimensional analysis method have been validated using results of a 1/10 scaled water test simulating the primary system of the SFR and a sodium test simulating a part of the primary system and the DHRS with about a 1/7 scale, and the applicability of the safety analysis for the SFR has been confirmed by comparing with the three-dimensional analysis adopting the turbulence model. Finally, a statistical safety evaluation has been performed for the SFR using the safety analysis method.  相似文献   

2.
A fully natural circulation-based system is adopted in the decay heat removal system (DHRS) of an advanced loop type fast reactor. Decay heat removal by natural circulation is a significant passive safety measure against station blackout. As a representative of the advanced loop type fast reactor, DHRS of the sodium fast reactor of 1500 MWe being designed in Japan comprises a direct reactor auxiliary cooling system (DRACS), which has a dipped heat exchanger in the reactor vessel, and two units of primary reactor auxiliary cooling system (PRACS), which has a heat exchanger in the primary-side inlet plenum of an intermediate heat exchanger in each loop. The thermal-hydraulic phenomena in the plant under natural circulation conditions need to be understood for establishing a reliable natural circulation driven DHRS. In this study, sodium experiments were conducted using a plant dynamic test loop to understand the thermal-hydraulic phenomena considering natural circulation in the plant under a broad range of plant operation conditions. The sodium experiments simulating the scram transient confirmed that PRACS started up smoothly under natural circulation, and the simulated core was stably cooled after the scram. Moreover, they were conducted by varying the pressure loss coefficients of the loop as the experimental parameters. These experiments confirmed robustness of the PRACS, which the increasing of pressure loss coefficient did not affect the heat removal capacity very much due to the feedback effect of natural circulation.  相似文献   

3.
The Gas Cooled Fast Reactor (GFR), which is among the Generation IV concepts under evaluation for future deployment, will have to satisfy the Gen IV goals in the area of sustainability, safety and economy. This paper discusses challenges posed by the GFR when striving for the achievement of balance among the above Generation IV goals, and the pros and cons of various design choices. Considering these goals, the currently preferred design direction at MIT is a GFR design using a direct supercritical CO2 cycle, traditional containment with design pressure of 5 bars, employment of redundant active emergency cooling systems with highly reliable and diverse power supplies, which can also function in the passive mode as a backup at 5 bars containment pressure, and TRU fueled cores using either block-type (TRU-U)C fuel or pin type (TRU-U)C fuel with double cladding or (TRU-U)O2 fuel vibropacked in a tube-in-duct assembly.  相似文献   

4.
A code PNCMC (Program for Natural Circulation under Motion Conditions) has been developed for natural circulation simulation of marine reactors. The code is based on one-dimensional two-fluid model in noninertial frame of reference. The body force term in the momentum equation is considered as a time dependent function, which consists of gravity and inertial force induced by three-dimensional ship motion. Staggered mesh, finite volume method, semi-implicit first order upwind scheme and Successive Over Relaxation (SOR) method are used to discretize and solve two-phase mass, momentum and energy equations. Single-phase natural circulation experiments under rolling condition performed in Institute of nuclear and new energy technology of Tsinghua University and two-phase natural circulation experiments under rolling condition performed by Tan and colleagues are used to validate PNCMC. The validation results indicate that PNCMC is capable to investigate the single-phase and two-phase natural circulation under rolling motion.  相似文献   

5.
Owing to the inherent instability of the natural circulation system,flow instability can easily occur during the operation of a natural circulation lead-cooled fast reactor,especially during the startup phase.A compre-hensive startup scheme for SNCLFR-100,including pri-mary and secondary circuits,is proposed in this paper.It references existing more mature startup schemes in various reactor types.It additionally considers the restriction con-ditions on the power increase in other schemes and the characteristics of lead-based coolant.On this basis,the multi-scale coupling code ATHLET-OpenFOAM was used to study the flow instability in the startup phase under different power-step amplitudes and power duration times.The results showed that obvious flow instability phenom-ena were found in the different startup schemes,such as the short-term backflow phenomenon of the core at the initial time of the startup.Moreover,an obvious increase in the flow rate and temperature to the peak value at the later stage of a continuous power rise was observed,as well as continuous oscillations before reaching a steady state.It was determined that the scheme with smaller power-step amplitude and a longer power duration time requires more time to start the reactor.Nevertheless,it will be more conducive to the safe and stable startup of the reactor.  相似文献   

6.
随着计算机软硬件技术的发展,三维数值分析技术已经成为池式快堆堆芯和钠池热工设计和计算分析的重要组成部分,并在其中发挥着不可替代的作用.通过对池式快堆几个典型热工现象的分析,展示了我国第一座池式快堆(中国实验快堆)热工设计和安全分析中所拥有的设计手段和工具,总结了三维数值分析技术在快堆工程中的应用,并指出了其对今后快堆热工设计的重要意义.  相似文献   

7.
一种反应堆非能动余热排出系统的方案设计   总被引:2,自引:0,他引:2  
提出了一种反应堆非能动余热排出系统的方案设计。该系统利用 3个回路的自然循环 ,把事故工况下的堆芯余热排出到最终热阱。利用RETRAN0 2程序分析了这种非能动余热排出方案的可行性 ,并结合陆奥堆的参数 ,对该非能动余热排出系统方案在 1 0 0 %额定工况下的余热排出能力进行了数值模拟计算 ,还分析了影响余热排出能力的几个关键因素  相似文献   

8.
中国实验快堆的安全特性   总被引:8,自引:0,他引:8  
徐銤 《核科学与工程》2011,31(2):116-126
钠冷快堆因钠具有好的热物理特性而具有固有安全性,同时也因钠是活泼的碱金属,也难免会有钠的泄漏、钠火和钠水反应等工业事故.本文介绍了中国实验快堆利用钠冷快堆的固有安全性,装设了单靠自然循环和自然对流的事故余热导出系统等多项非能动安全系统及完善的能动安全系统,其安全性达到了第Ⅳ代先进核能系统的安全要求.对于大型快堆,因其保...  相似文献   

9.
Nuclear safety analysis remains of crucial importance for both the design and the operation of nuclear reactors. Safety analysis usually entails the simulation of several selected postulated accidents, which can be divided into two main categories, namely reactivity insertion accident (RIA) and loss of flow accident (LOFA). In this paper, thermal-hydraulic simulations of fast LOFA accident were carried out on the new core configuration of the material test research reactor NUR. For this purpose, the nuclear reactor analysis PARET code was used to determine the reactor performance by calculating the reactor power, the reactivity and the temperatures of different components (fuel, clad and coolant) as a function of time. It was observed that during the transient the maximum clad temperature remained well below the critical temperature limit of 110 °C, and the maximum coolant temperature did not exceed the onset of nucleate boiling point of 120 °C. It is concluded that the reactor can be operated at full power level with sufficient safety margins with regard to such kind of transients.  相似文献   

10.
小型模块化熔盐快堆燃料管理初步分析   总被引:1,自引:0,他引:1  
由于燃料随熔盐流动的特性以及可以进行在线添料与处理的特点,液态燃料熔盐堆的燃耗分析与燃料管理和传统固态燃料反应堆有很大不同,需要针对液态燃料熔盐堆的特点重新开发燃耗分析与管理程序。本文针对液态燃料熔盐堆的熔盐流动特性以及在线添料与处理功能,基于MCNP5和ORIGEN2.1燃耗耦合程序,开发了适用于液态燃料熔盐堆的燃料管理程序,并应用于一种小型模块化熔盐快堆的燃料管理和分析,对比分析了5种不同运行方案以及分批在线添料情况下,运行30年期间keff的变化情况及重要核素的演化情况。计算结果表明,采用不断调整添料率的连续在线添料运行方案和固定批量添料的运行方案,都可以让小型模块化熔盐快堆维持运行在一个较小的keff波动范围之内。开发的燃料管理程序适用于液态燃料熔盐堆的研究,同时可以为液态燃料熔盐堆的设计及燃耗管理和分析提供有价值的参考。  相似文献   

11.
Thermal hydraulic studies have been carried out to understand temperature dilution suffered by core-temperature monitoring system of a sodium cooled fast reactor. The three-dimensional computational model is validated against experimental results of a water model. Jet mixing phenomenon as predicted by different turbulence models is compared and RNG k? model is found to be better than other models. A comprehensive parametric study considering: (i) effects of construction/manufacturing tolerances on thermocouple positions with respect to subassembly positions, (ii) thermal/irradiation bowing of subassemblies, and (iii) changes in core power profile during reactor operation cycles has been carried out. The studies indicate the maximum possible dilution in fuel and blanket subassemblies to be 2.63 K and 46.84 K, respectively. Shifting of thermocouple positions radially outward by 20 mm with respect to subassembly centers leads to an overall improvement in accuracy of thermocouple readings. It is also seen that subassembly blockage that leads to 7% flow reduction in fuel subassembly and 12% flow reduction in blanket subassembly can be detected effectively by the core-temperature monitoring system.  相似文献   

12.
This paper shows that lead-cooled and sodium-cooled fast reactors (LFRs and SFRs) can preferentially consume minor actinides without burning plutonium, both in homogeneous and in heterogeneous mode. The former approach consists of admixing about 5% of minor actinides (MAs) into uranium–plutonium fuels in the core and using a limited number of thermalising pins consisting of UZrH1.6. These are needed to keep the negative Doppler feedback larger than the positive coolant reactivity coefficient. Our Monte Carlo burn-up calculations showed that a 600 MWe LFR self-breeder without blankets can burn an average of around 67 kg annually of MAs with a reactivity swing of only about −0.7$ per year. The reactivity swing of a corresponding 600 MWe SFR is more than three times larger due to the poorer breeding and half the critical mass in comparison to the LFR. However, when axial and radial blankets loaded with 10% MAs are added, the SFR burns 25% more MAs (131 kg/yr) and breeds 30% more Pu (150 kg/yr) than an equally sized LFR. When only the blankets are loaded with MAs, the SFR breeds 30% more Pu (198 kg/yr) and still burns about 60 kg a year of MAs. However, in terms of severe accident behaviour, the LFR, with its superior natural coolant circulation and larger heat capacity, has definite advantages.  相似文献   

13.
In this work the Monte Carlo codes MCNPX and TRIPOLI-4 were used to perform the criticality calculations of the fuel assembly and the core configuration of a gas-cooled fast reactor (GFR) concept, currently in development. The objective is to make contributions to the neutronic analysis of a gas-cooled fast reactor. In this study the fuel assembly is based on a hexagonal lattice of fuel-pins. The materials used are uranium and plutonium carbide as fuel, silicon carbide as cladding, and helium gas as coolant. Criticality calculations were done for a fuel assembly where the axial reflector thickness was varied in order to find the optimal thickness. In order to determine the best material to be used as a reflector, in the reactor core with neutrons of high energy spectrum, criticality calculations were done for three reflector materials: zirconium carbide, silicon carbide and natural uranium. It was found that the zirconium carbide provides the best neutron reflection. Criticality calculations using different active heights were done to determine the optimal height, and the reflector thickness was adjusted. Core criticality calculations were performed with different radius sizes to determine the active radial dimension of the core. A negative temperature coefficient of reactivity was verified for the fuel. The effect on reactivity produced by changes in the coolant density was also evaluated. We present the main neutronic characteristics of a preliminary fuel and core designs for the GFR concept. ENDF-VI cross-sections libraries were used in both the MCNPX and TRIPOLI-4 codes, and we verified that the obtained results are very similar.  相似文献   

14.
The design of a small high-temperature gas-cooled reactor (HTGR) for passive decay heat removal which could be located deeply underground was proposed previously. In the present work, analogue design analyses of passive decay heat removal for an above-ground long-life small prismatic HTGR was carried out to obtain the conditions for successful decay heat removal by radiation and conduction inside the reactor building, and by radiation and natural cooling by air at the outer surface of the reactor building. Sensitivity analysis of the peak temperatures of both the core and the reactor building after reactor shutdown was performed by changing the physical characteristics of the reactor regions. Enlarging the reactor building was found to be an effective way to reduce the peak reactor building temperature to within its design limit. By using the obtained condition for design parameters, the appropriate sizes of reactor core and reactor building were evaluated for some reactors. Consequently, criticality and burnup analyses for the proposed reactors were performed to confirm the possibility of designing a long-life core for the core size and reactor power which meet the condition of removing decay heat successfully. Using our design, all the reactors with 20 wt% uranium enrichment could be critical for over nine years.  相似文献   

15.
Our aim was to evaluate the sensitivity and uncertainty of mass flow rate in the core on the performance of natural circulation boiling water reactor (NCBWR). This analysis was carried out through Monte Carlo simulations of sizes up to 40,000, and the size, i.e., repetition of 25,000 was considered as valid for routine applications. A simplified boiling water reactor (SBWR) was used as an application example of Monte Carlo method. The numerical code to simulate the SBWR performance considers a one-dimensional thermo-hydraulics model along with non-equilibrium thermodynamics and non-homogeneous flow approximation, one-dimensional fuel rod heat transfer. The neutron processes were simulated with a point reactor kinetics model with six groups of delayed neutrons. The sensitivity was evaluated in terms of 99% confidence intervals of the mean to understand the range of mean values that may represent the entire statistical population of performance variables. The regression analysis with mass flow rate as the predictor variable showed statistically valid linear correlations for both neutron flux and fuel temperature and quadratic relationship for the void fraction. No statistically valid correlation was observed for the total heat flux as a function of the mass flow rate although heat flux at individual nodes was positively correlated with this variable. These correlations are useful for the study, analysis and design of any NCBWR. The uncertainties were propagated as follows: for 10% change in the mass flow rate in the core, the responses for neutron power, total heat flux, average fuel temperature and average void fraction changed by 8.74%, 7.77%, 2.74% and 0.58%, respectively.  相似文献   

16.
为研究反应堆堆内局部自然循环对非能动余热排出的影响,利用改进的RELAP5/MOD3.2程序对核动力装置及非能动余热排出系统进行数学建模与理论研究,并利用试验数据进行了校核。研究表明:在核动力装置自然循环运行条件下,由于反应堆上封头旁流及反应堆入口漏流通道的存在,在反应堆活性区、上封头、环腔及下腔室之间构成了局部自然循环流动现象;在主回路自然循环能力较弱时,堆内产生的局部自然循环流动占优,反应堆衰变热无法顺利带出。  相似文献   

17.
The residual heat removal system is an important safety system for nuclear reactors. Passive design of the residual heat removal system attracted more and more attention. Two new type passive residual heat removal systems, which have been used in multipurpose reactors developed in China, are introduced and the main experimental results are presented in this report. A simple comparison between the two systems is also given.  相似文献   

18.
中国实验快堆泵支承冷却系统温度场分析   总被引:1,自引:0,他引:1  
中国实验快堆一回路泵支承套筒是承重设备,位于高温的热钠池中.为了限制套筒和套简内部冷钠腔室的钠温度,维持主泵正常工作温度,设置钠泵支承冷却通道.利用计算流体动力学技术(CFD),对泵支承冷却系统进行三维模拟,通过对泵支承冷却系统冷却流道和支承结构的数值传热分析,得到了该系统的温度场分布情况,验证了泵支承冷却系统的冷却能力.  相似文献   

19.
20.
1 Introduction With respect to the inherent safety of nuclear re- actors, application of passive systems/components including natural circulation phenomena as the main mechanism is intended to simplify the safety-related systems and to improve their reliability, to reduce the effect of human errors and equipment failures, and to provide more time to enable the operators to prevent or mitigate serious accidents. Natural circulation is the main mode of heat removal for removing decay heat from t…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号