首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molten salt cooled Encapsulated Nuclear Heat Source (ENHS)-like reactors   总被引:1,自引:0,他引:1  
The feasibility of designing molten-salt cooled ENHS (Encapsulated Nuclear Heat Source)-like reactor cores with Pu15N-U15N nitride fuel for high temperature applications is assessed. The cores considered have uniform fuel composition and no blanket elements and solid reflectors. They are to operate for at least 20 effective full power years without refueling, without fuel shuffling and with burnup reactivity swing less than 0.52%. Three molten-fluoride-salts: NaF(57)-BeF2(43), 7LiF(66)-BeF2(34), and LiF(46.5)-NaF(11.5)-KF(42) are considered as the coolant and six materials: SS304, Hastelloy-N, HT-9, Mn-316SS, PCA, and SiC, are considered for the structures. It is found that, neutronically, ENHS-like cores can be designed for all combinations of molten-salt coolants and structural materials considered. Relative to the reference ENHS core, the molten-salt cooled cores require significantly tighter lattice, have softer neutron spectra, significantly more negative Doppler reactivity effect, much more positive coolant temperature and void reactivity effect and smaller reactivity worth of the control elements. Of the molten salts considered, LiF-NaF-KF offers the largest p/d ratio and is most suitable for natural circulation cooling.  相似文献   

2.
A number of approaches were explored for improving characteristics of the encapsulated nuclear heat source (ENHS) reactor and its fuel cycle, including: increasing the ENHS module power, power density and the specific power, making the core design insensitive to the actinides composition variation with number of fuel recycling and reducing the positive void coefficient of reactivity. Design innovations examined for power increase include intermediate heat exchanger (IHX) design optimization, riser diameter optimization, introducing a flow partition inside the riser, increasing the cooling time of the LWR discharged TRU, increasing the minor actinides' concentration in the loaded fuel and split-enrichment for power flattening. Another design innovation described utilizes a unique synergism between the use of MA and the design of reduced power ENHS cores.

Also described is a radically different ENHS reactor concept that has a solid core from which heat pipes transport the fission power to a coolant circulating around the reflector. Promising features of this design concept include enhanced decay heat removal capability; no positive void reactivity coefficient; no direct contact between the fuel clad and the coolant; a core that is more robust for transportation; higher coolant temperature potentially offering higher energy conversion efficiency and hydrogen production capability.  相似文献   


3.
Conceptual design of a Small-sized Reduced-Moderation Water Reactor (S-RMWR) core, which has the thermal output of 180 MW, the conversion ratio of 1.0 and the void reactivity coefficient of negative value, has been constructed. S-RMWR is a technology demonstration reactor which also conducts material and fuel testing for commercial use of Reduced-Moderation Water Reactor (RMWR) in large-scale power plants. It has a very tight triangular fuel rod lattice and a high coolant void fraction. The RMWR core axially has two short and flat uranium plutonium mixed oxide (MOX) regions with an internal blanket region in between, in order to avoid a positive void reactivity coefficient. The MOX regions are sandwiched between upper and lower blanket regions, in order to increase a conversion ratio.

In this small reactor core, leakage of neutrons is expected to be larger than in a large core. Therefore, a core design concept different from that for a large core is necessary. Core burnup calculations and nuclear and thermal-hydraulic coupled calculations were performed in the present study with SRAC and MOSRA codes. MVP code was also used to obtain control rod worth. Because of its large neutron leakage, keeping the void reactivity coefficient negative is easier for S-RMWR than RMWR. Thus, the heights of MOX region can be taller and the plutonium enrichment can be lower than in RMWR. On the other hand, to achieve the conversion ratio of 1.0, radial blanket and stainless steel reflector assemblies are necessary, whereas they are not needed for RMWR.  相似文献   

4.
ULOF and UTOP analyses of a large metal fuel FBR core (1,500 MWe, averaged discharge burnup: 150 GWd/t) are conducted. The effect of core radial expansion is considered as the major negative feedback during the transient. A detailed analysis system is used, in which a transient core thermal-hydraulic code is coupled with three dimensional core radial deformation and reactivity feedback calculation codes, in order to calculate the radial expansion feedback. In ULOF analysis, the pump flow halving time is assumed to be 10 s, which is reasonably long and effective in avoiding too large power to flow ratio. The reactivity insertion during UTOP is set to be 34¢, based on the control rod reactivity design. As the analysis results, it is found that the core shows benign responses to both events, owing largely to the radial expansion feedback. No significant coolant boiling or fuel failure is predicted. The response during ULOF is compared to that of an oxide fuel core of similar design, and it is confirmed that the negative Doppler effect associated with the fuel temperature rise plays the major role in the quick power decrease.  相似文献   

5.
选取大亚湾压水堆作为嬗变参考堆,研究在压水堆中嬗变长寿命裂变产物99Tc和129I的可行性。计算结果表明:在1个换料周期(18个月)内,99Tc的最大嬗变率为15.69%,129I的最大嬗变率为9.18%。通过对不同堆芯方案进行安全性分析发现:添加99Tc和129I后,堆芯有效增殖因数keff降低且随燃耗变化的幅度变小;堆芯径向中子通量密度分布无明显变化但径向功率峰因子降低;考虑燃料温度系数、慢化剂温度系数、硼微分价值以及控制棒价值等,得出在反应性温度系数及反应性控制方面不会导致安全问题,相反有优化作用。因此,从安全角度分析,在压水堆中嬗变99Tc和129I是可行的。  相似文献   

6.
This paper summarizes the neutronic part of a study of the feasibility of designing BWR cores to have enhanced power density and simplified fuel bundle by using hydride instead of oxide fuel. A 3D fuel bundle neutronic analysis is performed for a limited number of geometries to determine attainable discharge burnup, pin-by-pin power distribution, axial power distribution, reactivity coefficients, reactivity worth of control elements and burnable absorber effects. It is found that hydride fuel bundle design can be simplified by eliminating water rods and partial length fuel rods and by reducing the volume of water in-between the fuel bundles. Both an ideal and more practical bundle designs are examined. A companion study of the thermal-hydraulic and vibration characteristics of BWR cores predicts that the increase in the number of fuel rods per given core volume enables increasing the BWR power density by up to ∼30% relative to oxide fuelled core design. The net outcome is expected to be improved BWR economics even though hydride fuel requires higher uranium enrichment to compensate for its reduced uranium loading.  相似文献   

7.
The ENHS thermal hydraulic optimization code was modified and applied to search for the maximum attainable power from a wide range of ENHS design options subjected to the following constraints: maximum permissible hot channel coolant outlet temperature of 600 °C, clad inner temperature of 650 °C and primary coolant temperature rise of either 150 °C or 90% of the theoretical limit for accelerated corrosion rate. The TH optimization variables include the intermediate heat exchanger number of channels, channel width and elevation; diameter of the riser and diameter of a flow-splitting shroud in the riser. It was found possible to increase the attainable power from the nominal 125 MWth up to 311 MWth for the reference core, 400 MWth for a reference-like core having equilibrium composition fuel and 372 MWth for a flattened power core with 9 plutonium concentration zones. A power level exceeding 400 MWth may be achieved by flattening the power distribution of the equilibrium core or using nitride fuel with enriched nitrogen rather than metallic fuel. With forced circulation it is possible to operate the flattened power core at up to 532 MWth corresponding to 223 MWe.  相似文献   

8.
通过对235U富集度为19.9%的UO2和U3Si2-Al的弥散体2种燃料进行物理计算,从中筛选出了优化的堆芯方案,并对其静态物理参数,诸如有效倍增因子、绝对中子通量密度、上铍反射层反应性价值、反应性温度系数、控制棒价值等进行了计算。  相似文献   

9.
This work investigates the effect of initial fuel composition, power density and number of recycles on the pitch-to-diameter (P/D) ratio and TRans-Uranium isotopes (TRU) loading required for attaining one of the most important design goals of the Encapsulated Nuclear Heat Source (ENHS) – nearly zero burnup reactivity swing over the 20 years of core life. It is found that the required P/D ratio is sensitive to, primarily, the initial concentration of the short-lived isotope 241Pu in the fuel loaded into the first core and to the core power density. The longer is the cooling time of the TRU from LWR spent fuel the smaller becomes the relative 241Pu concentration and the smaller becomes the fraction of 241Pu lost via radioactive decay and, hence, the smaller needs be the conversion ratio required for nearly zero burnup reactivity swing and the larger can be the P/D ratio. Likewise, the higher is the ENHS power density, the smaller becomes the fraction of 241Pu lost via radioactive decay and the larger becomes the P/D required for the first core. The optimal P/D ratio tends to increase with the number of times the fuel is recycled from one ENHS core to the next one. The optimal P/D ratio for the equilibrium composition core is in between 1.53 and 1.59. For a given discharge burnup it tends to somewhat increase with the equilibrium core power density. However, if structural materials will be developed to enable a 20 years core life at elevated power densities, the higher the power density the smaller is the required equilibrium P/D ratio.  相似文献   

10.
One important parameter in the design and the analysis of a nuclear reactor core is the reactivity worth of the control rods, i.e. their efficiency to absorb excess reactivity. The control rod worth is affected by parameters such as the fuel burnup in the rod vicinity, the Xe concentration in the core, the operational time of the rod and its position in the core. In the present work, two different computational approaches, a deterministic and a stochastic one, were used for the determination of the rods worth dependence on the fuel burnup level and the Xe concentration level in a conceptual, symmetric reactor core, based on the MTR fuel assemblies used in the Greek Research Reactor (GRR-1). For the deterministic approach the neutronics code system composed by the SCALE modules NITAWL and XSDRN and the diffusion code CITATION was used, while for the stochastic one the Monte Carlo code TRIPOLI was applied. The study showed that when Xe is present in the core, the rods worth is significantly reduced, while the rod worth variation with increasing burnup depends on the rods position in the core grid. The rod worth obtained with the use of the Monte Carlo code is higher than the one obtained from the deterministic code.  相似文献   

11.
The neutronic properties of U-ZrH1.6 fuelled PWR cores are investigated and compared against those of the currently used UO2 fuelled cores. In the first part of this work a parametric study is performed to quantify the neutronically achievable burnup for both hydride and oxide fuels at a number of enrichment levels and for a large number of geometries covering a wide design space of fuel rod outer diameter, D, and lattice pitch, P. The fuel temperature and coolant temperature reactivity coefficients as well as the small and large void reactivity coefficients are calculated for hydride fuel with 5% and 12.5% enriched uranium. For this purpose a simplified procedure was developed that can, using single unit cell or assembly calculations, (1) account for non-linear burnup dependent k and thus to adequately predict the discharge burnup; (2) estimate the burnup dependent soluble boron concentration and; (3) estimate the reactivity coefficients; all of the above for a multi-batch core. In the second part of this work a detailed neutronic analysis is carried out for the six most economical geometries of both oxide and hydride fuels, with the purpose of designing the U-ZrH1.6 fueled PWR cores to have negative reactivity coefficients. The preferred design found is replacement of 25 v/o of the ZrH1.6 by thorium hydride, along with addition of some IFBA burnable poison. It is also found that the conversion from oxide to hydride fueled PWR cores could be done without modifications in the control system.  相似文献   

12.
Cell calculations of a Th-fueled PWR are carried out to discuss the burnup characteristics, coolant void reactivity coefficients, and the effectiveness of the mechanical spectral shift control method by fertile rod insertion. It is shown that the Th fuel can achieve a high discharge burnup with less increase of the fissile concentration than in the U fuel. It is also shown, particularly in the Th-fueled cores, that the fertile rods are effective for the spectral shift control and for improving the conversion ratio.  相似文献   

13.
This special issue of Nuclear Engineering and Design consists of a dozen papers that summarize the research accomplished in the DOE NERI Program sponsored project NERI 02-189 entitled “Use of Solid Hydride Fuel for Improved Long-Life LWR Core Designs”. The primary objective of this project was to assess the feasibility of improving the performance of pressurised water reactor (PWR) and boiling water reactor (BWR) cores by using solid hydride fuels instead of the commonly used oxide fuel. The primary measure of performance considered is the cost of electricity (COE). Additional performance measures considered are attainable power density, fuel bundle design simplicity, in particular for BWRs, safety, attainable discharge burnup, and plutonium (Pu) transmutation capability.Collaborating on this project were the University of California at Berkeley Nuclear Engineering Department (UCB), Massachusetts Institute of Technology Nuclear Science and Engineering Department (MIT), and Westinghouse Electric Company Science and Technology Department. Disciplines considered include neutronics, thermal hydraulics, fuel rod vibration and mechanical integrity, and economics.It was found that hydride fuel can safely operate in PWRs and BWRs having comparable or higher power density relative to typical oxide-fueled LWRs. A number of promising applications of hydride fuel in PWRs and BWRs were identified: (1) Recycling Pu in PWRs more effectively than is possible with oxide fuel by virtue of a number of unique features of hydride fuel-reduced inventory of 238U and increased inventory of hydrogen. As a result, the hydride-fueled core achieves nearly double the average discharge burnup and the fraction of the loaded Pu it fissions in one pass is double that of the MOX fuel. (2) Eliminating dedicated water moderator volumes in BWR cores, thus enabling significant increase of the cooled fuel rod surface area as well as the coolant flow cross-section area in a given fuel bundle volume while reducing the heterogeneity of BWR fuel bundles, thus achieving flatter pin-by-pin power distribution. The net result is an increase in the core power density and a reduction of the COE.A number of promising oxide-fueled PWR core designs were also found in this study: (1) The optimal oxide-fueled PWR core design features a smaller fuel rod diameter (D) of 6.5 mm and a larger pitch to rod diameter (P/D) ratio of 1.39 than that presently practiced by industry of 9.5 mm and 1.326. This optimal design can provide a 27% increase in the power density and a 19% reduction in the COE provided the PWR can be designed to have the coolant pressure drop across the core increased from the reference 0.20 MPa (29 psi) to 0.414 MPa (60 psi). Under the set of constraints assumed in this work, hydride fuel was found to offer comparable power density and economics as oxide fuel in PWR cores when using fuel assembly designs featuring square lattice and grid spacers. This is because pressure drop constraints prevented achieving sufficiently high power using hydride fuel with a relatively small P/D ratio of around 1.2 or less, where it offers the highest reactivity and a higher heavy metal (HM) loading. (2) Using wire-wrapped oxide fuel rods in hexagonal fuel assemblies, it is possible to design PWR cores to operate at ∼50% higher power density than the reference PWR design that uses grid spacers and a square lattice, provided 0.414 MPa coolant pressure drop across the core could be accommodated. Uprating existing PWRs to use such cores could result in up to 40% reduction in the COE. The optimal lattice geometry is D = 9.34 mm and P/D = 1.37. The most notable advantages of wire-wraps over grid spacers are their significantly lower pressure drop, higher critical heat flux, and improved vibration characteristics.The achievement of the highest power gains claimed in this study is possible as long as mechanical components like assembly hold-down devices (both in PWRs and in BWRs) and steam dryers (only in BWRs) are appropriately upgraded to accommodate the higher coolant pressure drop and flow velocities required for the high-performance LWR designs. The compatibility of hydride fuel with Zircaloy clad and with PWR and BWR coolants need yet be experimentally demonstrated. Additional recommendations are given for future studies that need to be undertaken before the commercial benefits from use of hydride fuel could be reliably quantified.  相似文献   

14.
小型长寿命核能系统燃料物理性能的研究   总被引:1,自引:0,他引:1  
余纲林  王侃 《核动力工程》2007,28(4):5-8,38
本文在简要说明世界上小型长寿命核能系统研究现状的基础上,提出了使用钍-铀燃料和铅-铋冷却剂构造小型长寿命堆芯的设想,并为此进行了一系列燃料物理性能的研究.对于长寿命核能系统的堆芯物理设计,使反应性随燃耗变动最小非常重要,同时应该尽可能地提高堆芯的燃耗以满足长寿命运行的需求.本文使用MCNP和MCBurn程序详细计算分析了使用不同的初始驱动燃料、不同栅格、燃料成分和类型、富集度条件下,燃料栅元的燃耗反应性变化等性能,并对其进行了能谱、转换比、富集度变化等方面的分析,经过对比初步确定了使用钍-铀燃料构造长寿命堆芯的物理条件,并以此为起点构造出一个堆芯,计算给出了反应性空泡系数等安全参数.  相似文献   

15.
A fundamental knowledge of fuel behavior in different situations is required for safe and economic nuclear power generation. Due to the importance of a fuel rod behavior modelling in high burnup, in this paper, the radial distribution of burnup, fission products, and actinides atom density and their variations by increasing burnup and other factors such as temperature, enrichment and power density are studied in a fuel pellet of a VVER-1000 reactor in an operational cycle using the MCNPX 2.7 Monte Carlo code. A benchmark including a Uranium-Gadolinium (UGD) fuel assembly is used for verification of the developed model in the MCNPX code for radial burnup calculation. A sensitivity study is carried out to investigate the effect of different parameters such as the number of particles per cycle, the number of geometrical radial nodes in the fuel pellet, the number of burnup steps and the selection of different fission-product contents (i.e. those isotopes that are used for particle transport) on the MCNPX model for speed and accuracy compromising. To calculate the radial temperature profiles and to analyze the effect of temperature on the radial burnup distribution and vice versa, the HEATING 7.2 code, which is a general-purpose conduction heat transfer program, and the MCNPX code are applied together. The results show the accuracy and capability of the proposed model in the MCNPX and HEATING codes for radial burnup calculation.  相似文献   

16.
Abstract

A reactivity control method was proposed for a boiling water reactor (BWR) fuel bundle, which has a potential for higher burnup with an increase in fuel enrichment. The new method optimized the distribution and amount of nonboiling water area in a fuel bundle in order to enhance the reactivity control capacity.

Using the method, a 9×9 lattice fuel bundle with a small-sized channel box, large-sized water rods and a reduced fuel rod diameter was proposed for the discharged burnup of 70 GWd/t and the operational cycle length of 18 months. The core, which consists of the proposed fuel bundles with the bundle-averaged enrichment of 5.8% and includes other modifications concerning a neutron low leakage loading pattern, natural uranium axial blankets, and spectral shift with recirculation flow control, has a cold shutdown margin greater than the design limit (1%Δk) with minimum fuel bundle shuffling. Further, it has potentials for natural uranium savings of about 20% per unit power and reduction in the amount of reprocessing of about 60% per unit power, compared with current BWR designs.  相似文献   

17.
To make fuel rods more resistant to grid-to-rod fretting or other cladding penetration failures, the cladding thickness could be increased or strengthened. Implementation of thicker fuel rod cladding was evaluated for the NPP Krško that uses 16 × 16 fuel design. Cladding thickness of the Westinghouse standard fuel design (STD) and optimized fuel design (OFA) is increased. The reactivity effect during the fuel burnup is determined. To obtain a complete realistic view of the fuel behaviour a typical, near equilibrium, 18-month fuel cycle is investigated. The most important nuclear core parameters such as critical boron concentrations, isothermal temperature coefficient and rod worth are determined and compared.  相似文献   

18.
Attainable discharge burnups for oxide and hydride fuels in PWR cores were investigated using the TRANSURANUS fuel performance code. Allowable average linear heat rates and coolant mass fluxes for a set of fuel designs with different fuel rod diameters and pitch-to-diameter ratios were obtained by VIPRE and adopted in the fuel code as boundary conditions. TRANSURANUS yielded the maximum rod discharge burnups of the several design combinations, under the condition that specific thermal-mechanical fuel rod constraints were not violated. The study shows that independent of the fuel form (oxide or hydride) rods with (a) small diameters and moderate P/Ds or (b) large diameters and small P/Ds give the highest permissible burnups limited by the rod thermal-mechanical constraints. TRANSURANUS predicts that burnups of ∼74 MWd/kg U and ∼163 MWd/kg U (or ∼65.2 MWd/kg U oxide-equivalent) could be achieved for UO2 and UZrHx fuels, respectively. Furthermore, for each fuel type, changing the enrichment has only a negligible effect on the permissible burnup. The oxide rod performance is limited by internal pressure due to fission gas release, while the hydride fuel can be limited by excessive clad deformation in tension due to fuel swelling, unless the fuel rods will be designed to have a wider liquid metal filled gap. The analysis also indicates that designs featuring a relatively large number of fuel rods of relatively small diameters can achieve maximum burnup and provide maximum core power density because they allow the fuel rods to operate at moderate to low linear heat rates.  相似文献   

19.
为研究钍铀燃料在CANDU6堆中的应用,采用DRAGON/DONJON程序,对使用离散型钍铀燃料37棒束组件的CANDU6堆进行时均堆芯分析。结果表明,组件采用235U富集度为2.5%的铀棒以及第1、2、3圈布置钍棒的37棒束组件,堆芯在8棒束换料、3个燃耗分区的方案下,组件的冷却剂空泡反应性较使用天然铀的37棒束组件(NU-37组件)与采用混合钍铀元件棒的37棒束组件更负;堆芯最大时均通道/棒束功率满足小于6700?kW/860?kW的限值;燃料转化能力比采用NU-37组件时更高;卸料燃耗可到达13400?MW·d/t(U)。研究表明,所设计的离散型钍铀燃料37棒束组件可用于现有CANDU6堆芯,且无需对堆芯结构及控制机构作重大改造;燃料组件和堆芯设计方案可为钍铀燃料在CANDU6堆芯的应用提供参考。   相似文献   

20.
An analysis of the MOX critical experiments BASALA was performed to verify the pin-by-pin core analysis method using a three-dimensional direct response matrix. The BASALA experiments simulate full MOX BWR cores, and they were carried out in the EOLE critical facility of the French Atomic Energy Commission (CEA) by the Nuclear Power Engineering Corporation (NUPEC) in collaboration with CEA. The BASALA experimental cores are very heterogeneous because their size is much smaller than that of commercial power plants. The main features of the pin-by-pin core analysis method using the three-dimensional direct response matrix are that the response matrix can reflect the intra-assembly heterogeneous effect, the diffusion approximation is not involved, and the fuel rod fission rate can be directly evaluated. The maximum difference of the critical k-effective values among all nine cores analyzed was about 0.4% Δk. The root mean square differences between the calculated and measured radial fuel rod fission rate distributions in the test assembly of all cores were within 1.8% and nearly comparable to measurement error. The calculated results of the reactivity worth agreed with the measured results within 9%. These good agreements mean that the pin-by-pin core analysis method using the three-dimensional direct response matrix accurately reflects the effects of the intra- and inter-assembly heterogeneities in heterogeneous systems like the BASALA experimental cores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号