首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidized low density lipoproteins (oxLDL) are thought to play a central role in the development of atherosclerosis. Toxic concentrations of mildly oxidized LDL elicit massive apoptosis of endothelial cells (Escargueil-Blanc, I., Meilhac, O., Pieraggi, M. T. , Arnal J. F., Salvayre, R., Nègre-Salvayre, A. (1997) Arterioscler. Thromb. Vasc. Biol. 17, 331-339). Since the lipid mediator ceramide emerged as a potent inducer of apoptosis, we aimed at investigating the occurrence of ceramide formation and its potential role in oxLDL-induced apoptosis. In ECV-304 endothelial cells, toxic concentrations of oxLDL triggered an early activation of the sphingomyelin-ceramide pathway, as shown by both sphingomyelin hydrolysis and ceramide formation. N-Tosyl-L-phenylalanyl chloromethyl ketone (TPCK) and dichloroisocoumarin (DCIC), two serine-protease inhibitors (serpins), blocked the oxLDL-induced ceramide generation but, unexpectedly, did not inhibit the oxLDL-induced apoptosis. Conversely, treatment of endothelial cells by bacterial sphingomyelinase, under conditions effectively generating ceramide, did not induce apoptosis. In contrast, short-chain permeant C2- and C6-ceramides elicited apoptosis of ECV-304. However, the mechanisms of apoptosis triggered by C2-ceramide and by oxLDL were (at least in part) different, because C2-ceramide-induced apoptosis was calcium-independent, whereas oxLDL-induced apoptosis was calcium-dependent. In conclusion, it is suggested that oxLDL-induced apoptosis is calcium-dependent but independent of the activation of the sphingomyelin-ceramide pathway and that the toxic effect of short chain permeant ceramides is calcium-independent and does not mimic the effect of natural ceramides induced by oxLDL.  相似文献   

2.
Oxidized low-density lipoprotein (oxLDL) is considered one of the principal effectors of atherogenesis. To explore mechanisms by which oxLDL affects human mononuclear phagocytes, we incubated these cells in medium containing oxLDL, acetylated LDL (acLDL), or native LDL, or on surfaces coated with these native and modified lipoproteins. The presence of soluble oxLDL, acLDL, or native LDL in the medium did not stimulate H2O2 secretion by macrophages. In contrast, macrophages adherent to surfaces coated with oxLDL secreted three- to fourfold more H2O2 than macrophages adherent to surfaces coated with acLDL or native LDL. Freshly isolated blood monocytes secreted little H2O2 regardless of the substrate on which they were plated. H2O2 secretion was maximal in cells maintained for 4-6 d in culture before plating on oxLDL-coated surfaces. Fucoidan, a known ligand of class A macrophage scavenger receptors (MSR-A), significantly reduced macrophage adhesion to surfaces coated with oxLDL or acLDL. Monoclonal antibody SMO, which blocks oxLDL binding to CD36, did not inhibit adhesion of macrophages to oxLDL-coated surfaces but markedly reduced H2O2 secretion by these cells. These studies show that MSR-A is primarily responsible for adhesion of macrophages to oxLDL-coated surfaces, that CD36 signals H2O2 secretion by macrophages adherent to these surfaces, and that substrate-bound, but not soluble, oxLDL stimulates H2O2 secretion by macrophages.  相似文献   

3.
Macrophage foam cells of atherosclerotic lesions store lipid in lysosomes and cytoplasmic inclusions. Oxidized low density lipoprotein (oxLDL) has been proposed to be the atherogenic particle responsible for the free and esterified cholesterol stores in macrophages. Currently, however, there is a paucity of data showing that oxLDL can induce much cholesterol accumulation in cells. The present studies compare the ability of mildly oxLDL (TBARS = 5 to 10 nmols/mg LDL protein) with acetylated LDL to induce free cholesterol (FC) and esterified cholesterol (EC) accumulation in pigeon, THP-1, and mouse macrophages. Mildly oxLDL stimulated high levels of loading comparable to acLDL where the cellular cholesterol concentrations ranged from 160 to 420 microg/mg cell protein with EC accounting for 52-80% of the cholesterol. Pigeon and THP-1 macrophages stored most (60-90%) of oxLDL cholesterol (both FC and EC) in lysosomes, and the bulk (64-88%) of acLDL cholesterol in cytoplasmic inclusions. Consistent with lysosomal accumulation, cholesterol esterification was 75% less in THP-1 macrophages enriched with oxLDL cholesterol compared with acLDL. Furthermore, addition of an acyl-CoA:cholesterol acyltransferase inhibitor did not significantly affect either cholesterol loading or the percent distribution of FC and EC in THP-1 and pigeon cells incubated with oxLDL. Surprisingly, mouse macrophages stored most of oxLDL (71%) and acLDL (83%) cholesterol within cytoplasmic inclusions. Also, in mouse macrophages, esterification paralleled cholesterol loading, and was 3-fold more in oxLDL treated cells compared with acLDL treated cells. Inhibition of ACAT led to a 62% and 90% reduction in the %EC in oxLDL and acLDL treated mouse macrophages, respectively. The results demonstrate that mildly oxidized low density lipoprotein (oxLDL) stimulates macrophage foam cell formation and lipid engorgement of lysosomes. However, the fate of oxLDL cholesterol markedly differs in macrophages of different species.  相似文献   

4.
BACKGROUND: Oxidized LDL (oxLDL) is believed to play a key role as a triggering molecule that causes injury to the endothelium as an early event in atherogenesis. However, the mechanisms by which oxLDL injures endothelial cells are entirely unknown. We speculate that oxLDL may activate a cellular suicide pathway that leads to apoptosis. METHODS AND RESULTS: Human umbilical venous endothelial cells (HUVEC) were incubated with increasing doses of native or oxLDL for 18 hours. Apoptosis of HUVEC was measured with an ELISA specific for histone-associated DNA fragments and confirmed with DNA laddering. Native LDL had no effect, but incubation with oxLDL dose-dependently induced apoptosis of HUVEC. Induction of apoptosis by oxLDL was associated with increased CPP32-like protease activity, which is the major enzyme that initiates the proteolytical cascade leading to cell death. Specific inhibition of CPP32 activity completely abrogated oxLDL-induced apoptosis. The antioxidants N-acetylcysteine and the combination of vitamins C and E prevented oxLDL-induced apoptosis, abrogated the enhancement of CPP32-like protease activity, and inhibited the proteolytic cleavage of CPP32 into its active subunit p17. CONCLUSIONS: oxLDL activates the suicide pathway leading to apoptosis of endothelial cells by enhancing CPP32-like protease activity. The oxLDL-mediated activation of CPP32 appears to involve the elaboration of reactive oxygen species. Activation of the cell death effector CPP32 by oxLDL may provide a mechanistic clue to the "response-to-injury" hypothesis of atherogenesis.  相似文献   

5.
BACKGROUND: Several experimental and clinical studies suggest that cyclosporin A (CSA) treatment reduces transplant atherosclerosis. Because oxidized LDL (oxLDL) is believed to play a key role in the development of atherogenesis, causing injury to the endothelium, and has been shown to induce apoptosis of endothelial cells, we investigated whether CSA inhibits oxLDL-induced apoptosis. METHODS AND RESULTS: Apoptosis was induced in human umbilical venous endothelial cells (HUVECs) by incubation of 10 microg/mL oxLDL for 18 hours. Coincubation with CSA dose dependently decreased oxLDL-induced apoptosis, with a maximal effect at 10 micromol/L. In addition, tumor necrosis factor-alpha- and angiotensin II-induced apoptosis was significantly prevented by CSA treatment, suggesting a general apoptosis-suppressive effect of CSA. CSA has been shown to inhibit disruption of the mitochondrial membrane function, which plays a key role in apoptosis induction. Indeed, oxLDL treatment triggered the release of cytochrome C from the mitochondria into the cytosol, indicating disturbance of the mitochondrial membrane. CSA (10 micromol/L) completely inhibited the oxLDL-induced release of cytochrome C. Moreover, tumor necrosis factor-alpha- and angiotensin II-induced cytochrome C release was prevented by CSA treatment. CONCLUSIONS: OxLDL induces dysfunction of the mitochondrial membrane, leading to cytochrome C release into the cytosol, and thereby stimulates apoptosis of human endothelial cells. Apoptosis suppression by CSA correlates with the prevention of mitochondrial dysfunction and thus indicates the importance of mitochondrial destabilization in oxLDL-induced apoptosis signaling. The inhibition of apoptosis by CSA might preserve the function of the endothelium and may at least in part contribute to the antiatherogenic effects of CSA in transplant atherosclerosis.  相似文献   

6.
Our previous studies have shown that human native low density lipoprotein (LDL) can be oxidized by activated human monocytes. In this process, both activation of protein kinase C (PKC) and induction of superoxide anion (O-2) production are required. PKC is a family of isoenzymes, and the functional roles of individual PKC isoenzymes are believed to differ based on subcellular location and distinct responses to regulatory signals. We have shown that the PKC isoenzyme that is required for both monocyte O-2 production and oxidation of LDL is a member of the conventional PKC group of PKC isoenzymes (Li, Q., and Cathcart, M. K. (1994) J. Biol. Chem. 269, 17508-17515). The conventional PKC group includes PKCalpha, PKCbetaI, PKCbetaII, and PKCgamma. With the exception of PKCgamma, each of these isoenzymes was detected in human monocytes. In these studies, we investigated the requirement for select PKC isoenzymes in the process of monocyte-mediated LDL lipid oxidation. Our data indicate that PKC activity was rapidly induced upon monocyte activation with the majority of the activity residing in the membrane/particulate fraction. This enhanced PKC activity was sustained for up to 24 h after activation. PKCalpha, PKCbetaI, and PKCbetaII protein levels were induced upon monocyte activation, and PKCalpha and PKCbetaII substantially shifted their location from the cytosol to the particulate/membrane fraction. To distinguish between these isoenzymes for regulating monocyte O-2 production and LDL oxidation, PKCalpha or PKCbeta isoenzyme-specific antisense oligonucleotides were used to selectively suppress isoenzyme expression. We found that suppression of PKCalpha expression inhibited both monocyte-mediated O-2 production and LDL lipid oxidation by activated human monocytes. In contrast, inhibition of PKCbeta expression (including both PKCbetaI and PKCbetaII) did not affect O-2 production or LDL lipid oxidation. Further studies demonstrated that the respiratory burst oxidase responsible for O-2 production remained functionally intact in monocytes with depressed levels of PKCalpha because O-2 production could be restored by treating the monocytes with arachidonic acid. Taken together, our data reveal that PKCalpha, and not PKCbetaI or PKCbetaII, is the predominant isoenzyme required for O-2 production and maximal oxidation of LDL by activated human monocytes.  相似文献   

7.
Leukocyte adhesion and subendothelial emigration, constant hallmarks of early atherogenesis, have been ascribed to the action of oxidized low-density lipoprotein (oxLDL). Using intravital fluorescence microscopy in the skinfold-chamber model in hamsters, we have previously shown that systemic administration of oxLDL stimulates leukocyte adhesion in vivo through a mechanism that depends on the generation and/or action of both leukotrienes and superoxide radicals. On the basis of the fact that oxygen radical-catalyzed peroxidation of phospholipids results in the generation of fragments with short sn2 residues, which besides authentic platelet-activating factor (PAF), activate the receptor for PAF on leukocytes and thereby induce leukocyte adhesion, we asked whether pretreatment of hamsters with a specific PAF receptor antagonist (WEB2170; 1 mg/kg of body weight IV, 10 minutes before oxLDL) attenuates leukocyte adhesion after injection of oxLDL (4 mg/kg of body weight IV, oxidized by 7.5 mumol/L Cu2+ for 18 hours at 37 degrees C). We demonstrate herein that in contrast to untreated control animals in which oxLDL elicited rolling and adhesion of circulating leukocytes to the endothelium of venules and arterioles, oxLDL-induced leukocyte adhesion was significantly attenuated in WEB2170-pretreated animals. These changes cannot be ascribed to alterations of microhemodynamic parameters and, hence, wall shear conditions. This finding indicates that oxLDL-induced leukocyte/endothelium interaction involves the PAF receptor, which may function both as a receptor for authentic PAF or for PAF-like lipids that are generated in a free radical-catalyzed peroxidation of phospholipids.  相似文献   

8.
Lipopolysaccharide (LPS) is cleared from the blood mainly by the liver. The Kupffer cells are primarily responsible for this clearance; liver endothelial and parenchymal cells contribute to a lesser extent. Although several binding sites have been described, only CD14 is known to be involved in LPS signalling. Among the other LPS binding sites that have been identified are scavenger receptors. Scavenger receptor class A (SR-A) types I and II are expressed in the liver on endothelial cells and Kupffer cells, and a 95-kDa receptor, identified as macrosialin, is expressed on Kupffer cells. In this study, we examined the role of scavenger receptors in the binding of LPS by the liver in vivo and in vitro. Fucoidin, a scavenger receptor ligand, significantly reduced the clearance of 125I-LPS from the serum and decreased the liver uptake of 125I-LPS about 40%. Within the liver, the in vivo binding of 125I-LPS to Kupffer and liver endothelial cells was decreased 72 and 71%, respectively, while the binding of 125I-LPS to liver parenchymal cells increased 34% upon fucoidin preinjection. Poly(I) inhibited the binding of 125I-LPS to Kupffer and endothelial cells in vitro 73 and 78%, respectively, while poly(A) had no effect. LPS inhibited the binding of acetylated low-density lipoprotein (acLDL) to Kupffer and liver endothelial cells 40 and 55%, respectively, and the binding of oxidized LDL (oxLDL) to Kupffer and liver endothelial cells 65 and 61%, respectively. oxLDL and acLDL did not significantly inhibit the binding of LPS to these cells. We conclude that on both endothelial cells and Kupffer cells, LPS binds mainly to scavenger receptors, but SR-A and macrosialin contribute to a limited extent to the binding of LPS.  相似文献   

9.
We have previously shown that 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) plays a major role in growth zone chondrocyte (GC) differentiation and that this effect is mediated by protein kinase C (PKC). The aim of the present study was to identify the signal transduction pathway used by 1,25(OH)2D3 to stimulate PKC activation. Confluent, fourth passage GC cells from costochondral cartilage were used to evaluate the mechanism of PKC activation. Treatment of GC cultures with 1,25(OH)2D3 elicited a dose-dependent increase in both inositol-1,4,5-trisphosphate and diacylglycerol (DAG) production, suggesting a role for phospholipase C and potentially for phospholipase D. Addition of dioctanoylglycerol to plasma membranes isolated from GCs increased PKC activity. Neither pertussis toxin nor choleratoxin had an inhibitory effect on PKC activity in control or 1,25(OH)2D3-treated GCs, indicating that neither Gi nor Gs proteins were involved. Phospholipase A2 inhibitors, quinacrine, OEPC (selective for secretory phospholipase A2), and AACOCF3 (selective for cytosolic phospholipase A2), and the cyclooxygenase inhibitor indomethacin decreased PKC activity, while the phospholipase A2 activators melittin and mastoparan increased PKC activity in GC cultures. Arachidonic acid and prostaglandin E2, two downstream products of phospholipase A2 action, also increased PKC activity. These results indicate that 1,25(OH)2D3-dependent stimulation of PKC activity is regulated by two distinct phospholipase-dependent mechanisms: production of DAG, primarily via phospholipase C and production of arachidonic acid via phospholipase A2.  相似文献   

10.
We show here that treatment of 3T3-L1 cells with leukemia inhibitory factor (LIF) stimulates the activation of mitogen-activated protein kinase kinase (MAPKK), mitogen-activated protein kinase (MAPK), and S6 protein kinase (S6K) activities both in a time- and dose-dependent manner. A single peak of MAPKK activity, four peaks of activity against the S6 synthetic peptide, RRLSSLRA (S6 peptide), and three distinct peaks toward myelin basic protein (MBP) were observed after Mono-Q chromatography of LIF-stimulated cell extracts. Two of the MBP kinase activities correlated with the stimulation of extracellular signal-regulated kinases 1 and 2. Interestingly, down-regulation of protein kinase C (PKC) by chronic treatment of 3T3-L1 cells with phorbol ester was found to attenuate, but not block, the LIF-mediated stimulation of MAPKK, MAPK, and S6K activities in 3T3-L1 cells. Treatment of 3T3-L1 cells with epidermal growth factor increased MAPKK, MAPK, and S6K activities to a similar extent as LIF, but this activation was not attenuated by down-regulation of PKC. Our results suggest that the full activation of the MAPK cascade by LIF may require inputs from multiple signaling pathways, one of which is dependent upon the presence of functional PKC.  相似文献   

11.
Cis-unsaturated fatty acids activate soluble protein kinase C (PKC) in vitro and in intact platelets. The following studies were conducted to determine the effects of oleate on individual isoenzymes of PKC in human platelets. Human platelets were found to contain predominantly PKC alpha, beta I, beta II, and delta with minor immunoreactivity for PKC epsilon, zeta, and eta. In intact platelets, sodium oleate caused a time-dependent redistribution of PKC alpha, beta II, and delta from cytosol to membrane fractions with little effects on PKC beta I. On the other hand, PMA and thrombin induced translocation of all four isoenzymes of PKC. In vitro, oleate partially activated (50% of Vmax) purified calcium-dependent PKC (alpha, beta I, and beta II) with an EC50 of 50 microM whereas it fully activated (100% of Vmax) purified calcium-independent PKC (predominantly delta) with an EC50 of 5 microM. The selective effects of oleate on PKC isoenzymes were investigated in platelet cytosol which contains endogenous PKC and its physiologic substrates. Under these conditions, oleate potently activated calcium-independent PKC causing the phosphorylation of the 40-kDa substrate. Activation of calcium-dependent isoforms occurred only at higher concentrations of oleate. Thus, oleate activates multiple isoenzymes of PKC with predominant effects on calcium-independent PKC.  相似文献   

12.
Bacterial lipopolysaccharide can induce manganese superoxide dismutase (MnSOD) gene expression in a variety of cells. Paclitaxel (taxol) shares many properties of lipopolysaccharide. Here we report that paclitaxel can induce MnSOD gene expression in human lung adenocarcinoma cell line A549 in a time- and dose-dependent manner. Additional anticancer drugs, vinblastine and vincristine, also induced MnSOD gene expression. We have shown previously (Das, K. C., and White, C. W. (1997) J. Biol. Chem. 272, 14914-14920) that these drugs can activate protein kinase C (PKC). The PKC agonists thymeleatoxin (0.5 microM) and 12-deoxyphorbol 13-phenylacetate 20-acetate (dPPA; 10 nM) potently induced MnSOD gene expression. Calphostin C and GF109203X, both specific inhibitors of PKC, each inhibited MnSOD gene expression by anticancer agents. Down-regulation of PKC by prolonged treatment with phorbol 12-myristate 13-acetate (PMA) also inhibited induction of MnSOD by anticancer drugs, indicating an important role of PKC in MnSOD signaling by these agents. Of 11 PKC isoenzymes, only PKCdelta translocated to the cell membrane after stimulation with anticancer drugs. By contrast, dPPA, PMA, and thymeleatoxin caused translocation of PKCalpha, betaI, delta, and mu isotypes. Anticancer drug-stimulated cells also had increased total PKC activity in membrane and cytosolic fractions. Thus, paclitaxel, vinblastine, and vincristine each specifically activate PKCdelta, whereas PMA, thymeleatoxin, and dPPA activate multiple isoenzymes. PKCdelta was the only isoform activated by each agent in both groups of compounds effective in MnSOD induction.  相似文献   

13.
This study was performed to examine effects of the overexpression of protein kinase C (PKC) isoforms (i.e., beta I, beta II, gamma, delta, eta, and zeta) on mitogen-activated protein (MAP) kinase (Erk-1 and -2) signaling and growth characteristics of NIH3T3 cells. Phorbol ester (PMA) activated endogenous and ectopically expressed PKC alpha, beta I, beta II, gamma, delta, epsilon, and eta. Overexpression of the examined PKC isoforms enhanced PMA-induced MAP kinase activation. Potentiation of MAP kinase activation was also observed upon stimulation of cells with platelet-derived growth factor (PDGF) although there was no indication for the activation PKC isoforms by PDGF. Inhibition of PKC blocked PMA- but not PDGF-induced MAP kinase activation. Thus, potentiation of PDGF-induced MAP kinase activation appears to be independent to PKC activity, while PMA-induced MAP kinase activation requires PKC activity. The ability of PKC isoforms to potentiate MAP kinase activation is not related to the growth characteristics of cells because individual PKC isoforms differentially regulated maximum density and proliferation of cells.  相似文献   

14.
The protein kinase C (PKC) family consists of 11 isoenzymes. Following activation, each isoenzyme translocates and binds to a specific receptor for activated C kinase (RACK) (Mochly-Rosen, D. (1995) Science 268, 247-251) that provides an anchoring site in close proximity to the isoenzyme's specific substrate. Pancreatic islet cells contain at least six PKC isoenzymes (Knutson, K. L., and Hoenig, M. (1994) Endocrinology 135, 881-886). Although PKC activation enhances insulin release, the specific function of each isoenzyme is unknown. Here we show that following stimulation with glucose, alphaPKC and epsilonPKC translocate to the cell's periphery, while deltaPKC and zetaPKC translocate to perinuclear sites. betaC2-4, a peptide derived from the RACK1-binding site in the C2 domain of betaPKC, inhibits translocation of alphaPKC and reduces insulin response to glucose. Likewise, epsilonV1-2, an epsilonPKC-derived peptide containing the site for its specific RACK, inhibits translocation of epsilonPKC and reduces insulin response to glucose. Inhibition of islet-glucose metabolism with mannoheptulose blocks translocation of both alphaPKC and epsilonPKC and diminishes insulin response to glucose while calcium-free buffer inhibits translocation of alphaPKC but not epsilonPKC and lowers insulin response by 50%. These findings illustrate the unique ability of specific translocation inhibitors to elucidate the isoenzyme-specific functions of PKC in complex signal transduction pathways.  相似文献   

15.
16.
Ceramide is an important lipid second messenger produced by sphingolipid metabolism in cells exposed to a limited number of agonists and in turn triggers several cell responses in a protein kinase C (PKC)-dependent manner. Stimulation of mesangial cells with a radioiodinated photoaffinity labeling analogue of ceramide, (N-[3-[[[2-(125I)iodo-4-[3-(trifluoromethyl)-3H-diazirin-3-yl]benz yl] oxy]carbonyl]propanoyl]-D-erythro-sphingosine) ([125I]-TID-ceramide), defines PKC-alpha and PKC-delta as direct targets of ceramide. No binding of ceramide to PKC-epsilon and PKC-zeta could be detected. Moreover, TID-ceramide selectively binds to recombinant PKC-alpha and -delta but not to PKC-epsilon and -zeta isoenzymes. In vitro kinase activity assays reveal that only the binding of ceramide to PKC-alpha is accompanied by an increase in kinase activity. In contrast, there is no change in in vitro kinase activity of the other isoforms tested, i.e., PKC-delta, -epsilon, and -zeta, toward any of the conventional substrates tested. However, it is noteworthy that PKC-delta shows a decreased autophosphorylation upon ceramide binding. In vivo, activation of PKC-alpha by ceramide is monitored by a delayed translocation of the isoform from the cytosol to the membrane fraction, detectable after 1 h of stimulation. In contrast, neither PKC-delta, nor -epsilon nor -zeta is redistributed by ceramide. One functional cell response mediated by PKC-alpha in mesangial cells is a negative feedback regulation of ligand-stimulated phosphoinositide hydrolysis. When cells are pretreated with ceramide, ATP-induced inositol trisphosphate formation is time-dependently reduced. A maximal inhibition is observed after 2 h of ceramide exposure. In summary, these results suggest that ceramide selectively interacts with the alpha- and delta-isoforms of PKC in mesangial cells. Whereas PKC-alpha is activated with pronounced inhibition of hormone-stimulated phosphoinositide signaling, PKC-delta displays a decrease in its autophosphorylation, suggesting a negative role of ceramide binding on PKC-delta activity.  相似文献   

17.
Stimulation of purified human PBL with mAbs raised against the T cell receptor resulted in an immediate and transient activation of protein kinase C-alpha (PKC-alpha) and PKC-theta, peaking at 10 min, whereas PKC-beta, -delta, and -epsilon were translocated with a delay of >90 min and remained activated for up to 2 h. To characterize specific functions of distinct PKC isoenzymes, Abs against different PKC isoenzymes were introduced by means of electropermeabilization. Neutralization of PKC-alpha and -theta resulted in the complete inhibition of IL-2R expression, whereas anti-PKC-beta, -delta, and -epsilon Abs inhibited IL-2 synthesis. Extensive control experiments have shown that neither electropermeabilization nor control Ig influenced PKC activity and cellular functions. Our data thus clearly show that specific PKC isoenzymes regulate different cellular functions in stimulated human lymphocytes.  相似文献   

18.
At least seven bacteriophage lambda clones encoding structurally related but unique polypeptides with PKC activity have been isolated from mammalian brain, epidermis, and lung cDNA libraries. The possibility that additional isoenzymes are expressed in human blood platelets or megakaryoblastoid human erythroleukemia cells was examined by polymerase chain reaction amplification of reverse transcribed RNA employing oligonucleotide primers corresponding to conserved peptide sequences. cDNAs encoding a novel PKC-related sequence, designated PKC-theta, and four (alpha, beta, delta, and eta) previously identified isoenzymes were isolated from reverse transcribed total RNA of human erythroleukemia cells and platelets. PKC-theta lacks a conserved region (C2) that is present in the calcium-dependent isoenzymes and therefore belongs to the group of novel, or nPKC, isoenzymes. Significantly increased [3H] phorbol 12,13-dibutyrate binding and cytoskeleton-associated calcium-independent PKC activity were found in COS cells expressing the transfected cDNA. Northern transfer analysis of mRNA from various human tissues revealed high level expression of PKC-theta in skeletal muscle, lung, and brain, and minimal expression in cardiac muscle, placenta, and liver. These findings extend the PKC family and suggest a novel approach to the study of diversity within this pathway of intracellular signal transduction.  相似文献   

19.
The investigation of the effect of oxidized lipoproteins on platelet activity is important for the understanding of the plague formation under atherosclerosis. In the present work, we examined the influence of low density lipoproteins (LDL) on ADP-induced platelet aggregation in the platelet rich plasma. In was demonstrated that mixing of plasma and LDL was accompanied by the decrease of ADP-induced aggregation parameters as compared to control (mixing with buffer). After 1 h incubation, platelet ADP-aggregation in the sample containing oxidized LDL (oxLDL) exceeded the ADP-aggregation in the control sample. The dependence of the aggregation parameters on the incubation time and on the degree of LDL oxidation were obtained. No difference in the cholesterol and phospholipid content was observed between cells incubated with buffer, native or oxidized LDL. Therefore, the possible oxLDL-induced accumulation of cholesterol in platelet membranes is excluded as a reason for the increased cell aggregation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号