首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
《人民黄河》2015,(8):108-110
台阶溢洪道是由常规光滑溢洪道发展而来的,对台阶溢洪道与光滑溢洪道的断面比能进行对比分析,引入台阶相对比能的概念。通过26.6°~48.0°坡度、0.5~2.0 m台阶高度的模型试验发现,相对比能与流程长度呈良好的线性关系。基于相对比能与流程长度的线性关系,联合光滑溢洪道水面线计算方法,实例计算了台阶溢洪道沿程水面线,计算结果与试验值吻合。  相似文献   

2.
为了研究台阶式溢洪道上水流能量特性,对坡比1:1.25不同台阶高度的台阶溢洪道进行模型试验,试验结果表明:台阶溢洪道上总水头沿程急剧降低;水流比能表现出沿程先增大后达到稳定值的规律;水流比能的变化决定总水头的变化,比能稳定值越小说明台阶溢洪道的消能效果越好。通过无量纲分析得出稳定比能与相关影响因子的2个无因次参数,结合试验和相关文献对2个无因次参数拟合,表现出良好的幂函数规律,相关系数为0.994 9~0.997 2。同时得出计算剩余能量和台阶溢洪道总消能率的经验公式,为相关设计提供参考。  相似文献   

3.
台阶式溢洪道作为一种具备消能效果的泄水建筑物被广泛应用于碾压式混凝土重力坝建设过程中,但由于其消能效果研究的复杂性和现场试验的不可操作性,针对台阶式溢洪道消能效果研究从未间断。本文利用断面比能为研究参数,对不同台阶高度、不同单宽流量台阶式溢洪道消能效果进行了系统的研究。研究得出:在台阶式溢洪道泄水过程中,总水头随着泄水流程增加呈线性降低;水流断面比能在泄水过程中呈现先增加后逐渐趋于稳定的趋势,且断面比能稳定的流程临界值为35—40m;断面比能随着单宽流量的增加而逐渐增加,二者之间呈现正相关关系;台阶式溢洪道台阶高度越高,消能效果越明显,当台阶高度由0.5m增加至2m时,台阶式溢洪道消能效果提高18.3%。  相似文献   

4.
阶梯式溢洪道上水流的剩余能量MJ·托齐主题词高坝,溢洪道,高速水流,能量方程,水力计算随着碾压混凝土筑坝技术的进展,人们认识到较高坝面消能度的好处(可以大幅度减小溢洪道下游消能建筑物的尺寸),故对阶梯式溢洪道越来越感兴趣。阶梯式溢洪道的水力学问题曾在...  相似文献   

5.
结合斯木塔斯水电站台阶式溢洪道水力学模型试验结果,引入了相对消能率和单宽消能功率,总结了台阶高度、单宽流量与消能率、相对消能率和单宽消能功率的变化规律,重点研究相对消能率的变化规律。研究表明,流量增加时台阶溢洪道的相对消能率和单宽消能功率逐渐增大,表明台阶所起到的消能功效增强了。  相似文献   

6.
《国际水力发电》1991,43(9):10-14
可消能的溢洪道可以减小坝下游冲刷,从而降低了消力池的费用。混凝土坝,特别是碾压混凝土坝,将做成台阶式坝面。水流流过粗糙或台阶式坝面可以消掉大部分能量。人们发现,一旦达到均匀水深时,能量损失与坝面长度成比例,即是说,能量损失增加等于坝高增加。因此,能量损失比率不仅随台阶形状而变,而且随坝高而增加。本文对推导出一个能量损失公式并用模型试验作出的评价加以讨论。高程不断降低的阶型瀑布,可以应用于低坝及石笼堰,在此也作了讨论。  相似文献   

7.
通过模型试验分析了台阶式溢洪道掺气对消能效果的影响。对比分析了无掺气坎、掺气坎高分别为20 cm和40 cm时的掺气效果和消能率。当掺气坎高时,水体掺气充分,水流涡旋剧烈,形成水汽两相流,水流下泄旋滚过程中势能转化成动能,在泄槽段可耗散较多能量。因此,设置掺气设施比不设置掺气设施消能效率大、消能效果好,有效地防止了空化空蚀现场的发生。  相似文献   

8.
柳莹 《小水电》2014,(3):21-23
结合实际工程的水工模型试验研究成果,对台阶式溢洪道的消能方式进行分析总结,并对其进行了设计优化,取得不错的效果。  相似文献   

9.
台阶式溢洪道消能率无法详细反映其消能特性,为了突出反映台阶消能作用,从总消能水头中扣除光滑溢洪道原有消能水头得到纯台阶消能部分,计算了单位高度纯台阶消能率,以及台阶消能所占总消能的比重。结果表明:滑行水流的单位高度纯台阶消能率约为0.80%/m~0.83%/m,与单宽流量和台阶数目均无关,随台阶高度增大增幅为4.5%;纯台阶消能所占总消能比重随单宽流量增大而增加,随台阶数目增多而减小;此外,还对单宽流量增加时消能率下降的原因进行了探讨。结果分析表明:大单宽流量消能率下降是由于光滑溢洪道能作用降低而纯台阶消能不变导致的。  相似文献   

10.
台阶式溢洪道的消能及其应用价值的探讨   总被引:2,自引:0,他引:2  
文中总结了溢洪道消能率的计算公式、消能率的影响因素、台阶式溢洪道的适用范围;对某水库的台阶式溢洪道和光滑面溢洪道的两个方案在效能效果、消力池长度等方面进行比较,分析了这两种方案各自的特点。结果表明,台阶式溢洪道消能主要集中在台阶段,而且相对于光滑面溢洪道,大大缩短了消力池的长度,降低了投资。  相似文献   

11.
台阶式溢洪道的消能特性是研究的热点方向,而单纯的台阶式溢洪道消能率并不能有效反映台阶在消能方面的价值。将台阶式溢洪道和同体形光滑溢洪道的消能规律进行对比,可以准确反映出台阶结构对水流消能的贡献。通过对26.56°、38.66°、51.30°三组坡度,0.5、1.0、2.0 m三种台阶高度的台阶式溢洪道进行水工模型试验研究,探讨了不同台阶高度(d)、单宽流量(q)、坡度(θ)下相对消能率(Δη)和台阶流程长度与水深比(L/h)的关系。结果表明:台阶水流为滑行流态时,在非均匀流段上相对消能率和台阶流程长度与水深比呈线性关系,复相关系数R~2在0.984 6~0.996 2之间,直线斜率随单宽流量、台阶高度、坡度的增大而增大。试验分析证实了研究相对消能率的必要性,Δη和L/h的线性关系为进一步探究台阶的消能特性提供了依据。  相似文献   

12.
流速和消能水头是重要的水力参数,但在台阶式溢洪道中尚无系统研究成果。将台阶式溢洪道流速、消能水头与对应光滑溢洪道流速、消能水头对比,引入相对流速、相对消能水头的概念。通过对0.5,1.0,2.0 m 3种不同台阶高度,38.66°坡度的台阶式溢洪道进行试验研究,探讨了流速、消能水头,相对流速、相对消能水头之间的关系。结果表明:非均匀流流态下流速、消能水头呈曲线关系,不便分析应用;相对流速和相对消能水头表现出良好线性关系,相关系数0.973 7~0.995 9,证实了引入相对流速、相对消能水头的必要性。  相似文献   

13.
大河口水库工程除险加固中,将溢洪道原来的光滑陡槽改为阶梯式消能工后,下泄水流在消力池内均能够形成水跃,有效地降低了泄洪对左侧公路的安全影响.  相似文献   

14.
为了研究台阶式溢洪道摩阻流速沿程变化规律,将其与相对应的光滑溢洪道进行对比,引入相对摩阻流速的概念。通过对台阶高度为0.5~2.0 m、坡角为26.6°~48.0°、单宽流量为35.7~62.2 m~2/s的台阶式溢洪道模型进行试验,分析了各个模型条件下摩阻流速和相对摩阻流速与流程长度之间的关系。分析发现:台阶式溢洪道摩阻流速沿程变化情况复杂,而台阶式溢洪道相对摩阻流速与流程长度之间具有良好的线性关系,规律显著,便于分析应用,以此论证了引入台阶式溢洪道相对摩阻流速的必要性。适当提高台阶高度对消能有利,在小单宽流量和坡度较陡时,台阶式溢洪道消能效果更佳。  相似文献   

15.
阶梯溢流坝自掺气水流的数值模拟   总被引:1,自引:0,他引:1  
从两相流基本方程出发,建立了适用于自掺气水流的数学模型,用明渠自掺气水流进行验证。应用此数学模型模拟计算了阶梯溢流坝面水气两相流的流速场、初始掺气点及消能率等参数,得出了初始掺气点的位置随流量的增加而下移,消能率随流量的增加而减小的结论。  相似文献   

16.
17.
Water Resources Management - The design of stepped spillways is a multi-objective optimization problem in which the uncertainty of parameters plays a key role in the stepped spillways’...  相似文献   

18.
由于台阶式溢洪道结构特殊,流态复杂,对台阶式溢洪道压强并未取得一致性的研究成果。对多个台阶式溢洪道滑掠流时均压强资料进行分析,探讨来流流量、掺气、台阶尺寸、溢洪道坡度等对台阶式溢洪道时均压强的影响。分析结果表明单宽流量大,时均压强变大;掺气可有效降低正压时均压力并增加负压值;台阶尺寸对台阶式溢洪道的影响较为复杂,台阶尺寸较小,且坡度较缓时竖直面压强呈中间小、两头大分布,坡度较大时具有2个压力极小值,位于竖直面底部和顶部,台阶尺寸较大时竖直面压强自下而上呈减小趋势;坡度增加,台阶式溢洪道压强变化幅度增大。  相似文献   

19.
与宽尾墩联合使用的台阶面破坏问题研究   总被引:1,自引:0,他引:1  
宽尾墩+台阶式溢洪道的消能形式已被许多工程所应用,但从近年工程运行情况看,个别工程出现台阶面破坏现象。根据工程模型试验资料,结合同类工程原型观测资料,对有可能在宽尾墩水舌作用下,影响台阶面出现破坏的时均压强、近底流速、掺气浓度等水力学参数分别进行了测试分析;同时,依据台阶面脉动压强和时均压强试验测试数据,采用材料力学方法,对台阶面混凝土分层后的受力情况也进行了分析。结果表明若台阶面碾压混凝土出现分层与表面止水破坏,则脉动压强就会通过表面缝隙与层面间隙作用于混凝土,混凝土也可能因此出现最大正应力,而当最大正应力超过混凝土的抗拉强度,台阶面混凝土就可能出现破坏。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号