首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 187 毫秒
1.
K~+掺杂量对BaBiO_3基陶瓷NTC特性的影响   总被引:4,自引:4,他引:0  
用传统的固相法制备了具有NTC特性的K+掺杂BaBiO3基陶瓷。研究了K+掺杂量对其NTC特性的影响。结果表明:试样的B25~85值和室温电阻率ρ25均随着x(K+)的增加呈现先减小后变大的趋势;当x(K+)为20%时,得到了具有较好NTC特性的陶瓷样品,其室温电阻率ρ25为1500?·cm,B25~85值为3176K。  相似文献   

2.
以Bi2O3,Fe2O3,MnO2和SrCO3为主要原料,采用传统固相法制备出具有负温度系数(NTC)特性的SrBiFeMnO陶瓷。研究了该陶瓷的物相结构、断面形貌及电性能。结果表明:试样的室温电阻率ρ25和热敏电阻特性常数B25/85随着x(Mn)的增加均呈现先增大后减小的趋势。在25~200℃的测试温区内,x(Mn)为0.1时,掺杂的SrBiFeO陶瓷材料的电阻率-温度特性呈现良好的线性关系;x(Mn)为0.5时,掺杂SrBiFeO陶瓷材料具有较好的NTC特性,其ρ25为145Ω.cm,B25/85为2950K。  相似文献   

3.
以BaCO3、Bi2O3为原料,Na2C2O4为掺杂剂,用传统固相法制备了具有NTC特性的BaBi1–xNaxO3陶瓷。用XRD,SEM和ρ-t特性测量仪,研究了Na+掺杂量对该陶瓷的物相、显微结构及电性能的影响。结果表明:BaBi1–xNaxO3陶瓷的B25/85值和室温电阻率ρ25均随着x(Na2C2O4)的增加呈现先减小后变大的趋势;当x(Na2C2O4)为0.050时,获得了具有较好NTC特性的试样,其ρ25为2200?·cm,B25/85值为3365K。  相似文献   

4.
SrBiFeO基NTC陶瓷的制备及其电性能研究   总被引:1,自引:1,他引:0  
以Bi2O3、Fe2O3和SrCO3为主要原料,采用传统固相法制备出具有NTC特性的SrBiFeO(SBF)陶瓷。研究了该陶瓷的物相结构、断面形貌及电性能。结果表明:试样由BiFeO3、SrFeO3-x和三方晶系的Sr2.25Bi6.75O12.38相组成,试样的室温电阻率ρ25随Fe2O3掺杂量的增加呈现先减小后增大的趋势,而B25/85值却呈现单调递增趋势,陶瓷试样SBF30即:n(Bi2O3):n(SrCO3):n(Fe2O3)=50:70:15时具有较好的NTC特性,ρ25为1.192×103Ω.cm,B25/85值为3 604 K。  相似文献   

5.
Sb_2O_3掺杂量对BaBiO_3基陶瓷电性能的影响   总被引:2,自引:1,他引:1  
为改善BaBiO3基陶瓷的NTC特性,选择Sb2O3为掺杂剂,以固相法合成了BaBiO3基陶瓷。研究了Sb2O3掺杂量对该陶瓷的物相、显微结构及电性能的影响。结果表明:Sb2O3掺杂BaBiO3基陶瓷的B25/85值和室温电阻率ρ25均随着n(Sb2O3)的增加呈现先减小后增大的趋势;当n(BaBiO3):n(Sb2O3)=1000:3时,获得了具有较好NTC特性的样品,其室温电阻率ρ25为416Ω.cm,B25/85值为2378K。  相似文献   

6.
以新型BaCo0.05Co0.1Bi0.85O3材料为基体,掺杂不同摩尔分数x(MnO2),在840℃下烧结4h制备了NTC厚膜电阻。借助XRD、SEM和直流阻温特性测试仪,研究x(MnO2)对电阻相组成、微结构及电性能的影响。结果表明:所得的NTC厚膜热敏电阻主要物相为具有钙钛矿结构的BaCo0.05Co0.1Bi0.85O3,且表面致密。当x(MnO2)超过5%时,有新相BaMnO3开始沿晶界析出,获得小尺寸晶粒;厚膜电阻的室温电阻率ρ25及B25/85值随x(MnO2)增加而升高;当x(MnO2)为10%时,ρ25从初始的13.5?·mm升高为810.0?·mm,B25/85值从600K升高到2049K。  相似文献   

7.
通过X线衍射(XRD)、扫描电子显微镜(SEM)和阻温特性测试仪,研究了不同NiO、Ni_2O_3掺杂量对BaNi~Ⅱ_xBi_(1-x)O_3和BaNi~Ⅱ_(x/3)Ni~Ⅲ_(2x/3)Bi_(1-x)O_3(摩尔比x=0.02~0.08)热敏陶瓷的物相、显微结构及电性能的影响。结果表明,BaNi~Ⅱ_xBi_(1-x)O_3与BaNi~Ⅱ_(x/3)Ni~Ⅲ_(2x/3)Bi_(1-x)O_3热敏陶瓷的室温电阻率ρ25及热敏常数B25~85值均随着NiO/Ni_2O_3掺杂量的增加呈现先减小后变大的趋势;试样BaNi~Ⅱ_(0.04)Bi_(0.96)O_3取得了良好的热敏性能,ρ25=2 743Ω·cm,B25~85=3 239K;BaNi~Ⅱ_(0.02)Ni~Ⅲ_(0.04)Bi_(0.94)O_3陶瓷的ρ25和B25~85的最优值分别为65Ω·cm和2 673K。  相似文献   

8.
CuO掺杂BFS基厚膜热敏电阻的研制   总被引:1,自引:1,他引:0  
以固相法制备的BaFe1–xSnxO3(BFS)材料为功能相、BaBiO3为粘结相、CuO为掺杂剂,制备了新型BFS基厚膜热敏电阻浆料,并用此浆料制备了BFS基厚膜热敏电阻。借助SEM和ρ-t特性测试仪,研究了CuO掺杂量对所制电阻显微结构及电性能的影响。结果表明:随着CuO掺杂量的增加,BFS基厚膜热敏电阻的方阻逐渐降低,其B25/85值则先缓慢上升,接着迅速降低,而后又逐渐增加。当CuO质量分数为14%时,所得电阻样品性能较好且具有明显的NTC特性,其方阻、B25/85值及电阻温度系数αR分别为:2.8×105?·□–1,3285K和3.69×10–2℃–1。  相似文献   

9.
Mn掺杂对BaSnO3陶瓷的NTC特性的影响   总被引:2,自引:1,他引:1  
以BaCO3和SnO2为主要原料,以Mn为受主掺杂,再掺入其它微量的烧结助剂和施受主杂质,用固相法制备出具有NTC特性的BaSnO3陶瓷。在30~190℃的测试温区内,x(Mn)为1.0%~1.8%的掺杂BaSnO3陶瓷材料,其电阻–温度特性呈现良好的线性关系;B值和电阻随着Mn掺杂量的增加而变大,B值的变化范围为5200~6100K;30℃时样品的电阻率变化范围为1.16×106~1.11×107·cm。  相似文献   

10.
采用传统陶瓷方法制作了Mg1+xAl0.8Cr0.6Fe0.6Lay(x=–0.10,–0.05,0,0.05,0.10,0.15,0.20;y=0,0.05)系高温NTC陶瓷材料,借用XRD、SEM和电性能测试等手段,研究了MgO含量及La2O3掺杂对陶瓷材料相结构和电学性能的影响规律。结果表明:适当增加MgO的含量可以有效提高陶瓷材料的常温电阻率和B值(材料常数),La2O3掺杂可改善高温NTC陶瓷材料B值的稳定性。当x=0.15,y=0.05时,在1 873 K烧结可获得ρ25=7.55×1010.cm,B=8 795 K的高温NTC陶瓷材料。  相似文献   

11.
Si掺杂对Mn-Co-Ni系NTC热敏电阻电性能的影响   总被引:2,自引:2,他引:0  
采用传统陶瓷工艺制备了Mn<,1.05-x>Co<,0.92>Ni<0.03,>Si<,x>O<,4>(O≤x≤<,0.05>)系列NTC热敏电阻样品,借用XRD、SEM和电性能测试等手段,研究了Si掺杂量对样品相结构和电性能的影响.结果表明:当0≤x≤0.03时,样品为尖晶石立方相和四方相的固溶体,室温电阻率р<,2...  相似文献   

12.
采用传统固相反应法,制备了一种新型NTC热敏陶瓷SrFexSn1-xO3-δ(0.2≤x≤0.5)。研究了该陶瓷体系样品的相组成、微观结构以及电性能。结果表明:所有样品均为纯钙钛矿相,并且呈现典型的NTC特性;随着Fe含量的升高,SrFexSn1-xO3-δ陶瓷样品的室温电阻率急剧降低,其B25/85和激活能则呈现温和降低的趋势。当0.2≤x≤0.5时,陶瓷样品的室温电阻率,B25/85以及激活能分别处于(518.00~3.56)×103Ω·cm、4912~3793K和0.424~0.327eV。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号