首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, versatile route for the synthesis of carbon nanotube supported SnO2 nanoparticles was set up via wet chemical process. Amorphous carbon nanotube (α-CNTs) was used to immobilize SnO2 nanoparticles. α-CNTs was first modified with hydrophilic groups, and then Large density of SnO2 nanoparticles were uniformly decorated into the wall of α-CNTs. The diameters of SnO2 nanoparticles in the wall range from 10 nm to 30 nm, with mean diameters about 22 nm. This approach provides an efficient method to attach other metal oxides and other nanoparticles to carbon nanotubes.  相似文献   

2.
制备了以SiO2为核、介孔SiO2为壳的核-壳颗粒负载纳米金属颗粒以及介孔SiO2壳层包覆SiO2负载的纳米金属颗粒。结果表明,十六烷基三甲基溴化胺(CTAB)作为模板剂,有助于介孔SiO2壳层包覆SiO2核的结构形成,介孔SiO2壳层的孔径方向垂直于SiO2核的表面;在聚乙烯吡咯烷酮(PVP)的稳定作用下,Pt纳米颗粒能均匀地分布在介孔SiO2壳层的表面。单分散SiO2颗粒经过3-氨丙基三乙氧基硅烷(APS)功能化后,可负载纳米金属颗粒。进一步研究表明,以SiO2负载纳米金属颗粒为核,NH3.H2O,乙醇和水为分散剂,CTAB为模板剂,正硅酸乙酯(TEOS)为硅源,还能制备介孔SiO2壳包覆SiO2负载的纳米金属颗粒,而且介孔SiO2壳层的厚度可通过TEOS的含量调节。  相似文献   

3.
采用沉淀方法制备了直径分布狭窄的均匀Fe3O4纳米颗粒.Fe3O4纳粒形体几近一致,平均粒径为10.33 nm±2.99 nm(平均粒径±标准偏差).在超声作用下将MgO纳米颗粒分散在一定量Fe3O4纳米颗粒的水溶液中获得MgO负载Fe3O4的纳米颗粒.以甲烷为碳源,Fe3O4/MgO为催化剂,经化学气相沉积,在Fe3O4纳粒上制得了大量直径近乎均匀的单壁碳纳米管(SWCNTs)束.TEM显示:SWCNTs的平均直径1.22rm.热重分析显示:样品在400℃~600℃温度区间失重量约19%.拉曼光谱显示:SWCNTs的ID/IG的强度比为0.03,表明采用Fe3O4/MgO催化剂可制得高石墨化程度的单壁碳纳米管.  相似文献   

4.
The effect of complex biological fluids on the surface and structure of nanoparticles is a rapidly expanding field of study. One of the challenges holding back this research is the difficulty of recovering therapeutic nanoparticles from biological samples due to their small size, low density, and stealth surface coatings. Here, the first demonstration of the recovery and analysis of drug delivery nanoparticles from undiluted human plasma samples through the use of a new electrokinetic platform technology is presented. The particles are recovered from plasma through a dielectrophoresis separation force that is created by innate differences in the dielectric properties between the unaltered nanoparticles and the surrounding plasma. It is shown that this can be applied to a wide range of drug delivery nanoparticles of different morphologies and materials, including low‐density nanoliposomes. These recovered particles can then be analyzed using different methods including scanning electron microscopy to monitor surface and structural changes that result from plasma exposure. This new recovery technique can be broadly applied to the recovery of nanoparticles from high conductance fluids in a wide range of applications.  相似文献   

5.
Using nanoparticles to impart extrinsic rippling in graphene is a relatively new method to induce strain and to tailor the properties of graphene. Here, we study the structure and elastic properties of graphene grown by chemical vapour deposition and transferred onto a continuous layer of SiO2 nanoparticles with diameters of around 25 nm, prepared by Langmuir–Blodgett technique on Si substrate. We show that the transferred graphene follows only roughly the morphology induced by nanoparticles. The graphene membrane parts bridging the nanoparticles are suspended and their adhesion to the atomic force microscope tip is larger compared to that of supported graphene parts. These suspended graphene regions can be deformed with forces of the order of 10 nN. The elastic modulus of graphene was determined from indentation measurements performed on suspended membrane regions with diameters in the 100 nm range.  相似文献   

6.
D. Zhao  E. Han  X. Wu  H. Guan 《Materials Letters》2006,60(29-30):3544-3547
By single-step supercritical hydrothermal synthesis method, ceria nanoparticles with diameters of 3–8 nm were successfully supported on multi-wall carbon nanotubes (MWNTs) homogeneously without additional treatment. It was found that the amount and distribution of ceria nanoparticles supported on the MWNTs depended on the pH of reaction mixture. At pH = 7, the largest amount of particles was observed on the MWNTs. At pH = 9, however, the best homogeneity was obtained for the ceria nanoparticles supported on the MWNTs. In addition, the amount of particles supported on the MWNTs treated by nitric acid was much more than that supported on the untreated MWNTs. The difference mentioned above is also discussed.  相似文献   

7.
Pd nanoparticles supported in functionalized mesoporous silica were prepared. Mesoporous silica support was modified with [3-(2-aminoethyl aminopropyl)] trimethoxysilane. Palladium ions were grafted onto the functionalized mesoporous silica and reduced with hydrazine hydrate to obtain the Pd nanoparticles supported on functionalized mesoporous silica. The Pd loading in the nanocomposite of Pd supported on the functionalized mesoporous silica is 4.30 wt%. CO chemisorption analysis on the nanocomposite shows a Pd dispersion as high as 35% and a Pd surface area of 156 m2/g. The surface area, pore size, and pore volume decrease slightly with the incorporation of the Pd nanoparticles into the functionalized mesoporous silica. Pd supported on the functionalized mesoporous silica with controlled molar ratio of amino groups to palladium exhibits an excellent catalytic activity and low Pd leaching for the Heck carbon-carbon coupling reaction. The catalyst can be reused for at least six recycles in air with only a minor loss of activity.  相似文献   

8.
病原微生物严重威胁着人类的健康安全,纳米银作为一种新型抗菌材料,其制备与应用已成为纳米材料领域的研究热点。本文综述了纳米银的主要合成方法,包括多糖法、Tollens试剂法、辐射法、生物法和多金属氧酸盐法等,具有原料广泛、反应温和、成本低廉和环境友好等优点。基于纳米银的优异抗菌性能,总结了纳米银的抗菌机理及其抗菌应用,并展望了纳米银在抗菌涂料、抗菌包装等领域的发展前景。  相似文献   

9.
Pure and Fe doped ZnO nanoparticles were prepared by a facile and cost-effective co-precipitation method. The X-ray diffractograms (XRD) reveal that the grown nanoparticles are hexagonal in structure and the crystallite sizes are in the range of 27–28 nm. The transmission electron microscope (TEM) micrographs confirmed the spherical nature of the grown particles and the Fourier transform-infrared (FT-IR) studies confirmed the presence of Zn–O bonding in the prepared nanoparticles. Additionally, the presence of the constituent elements is confirmed with XPS analysis. The optical bandgap of the prepared nanoparticles are calculated as 3.28, 3.19 and 3.08 eV for ZnO, ZnO–Fe 10 at.% and ZnO–Fe 20 at.%, respectively. The photocatalytic dye degradation efficiency against methylene blue, is 68.52, 73.96, and 87.92, respectively. To validate the photocatalytic activity, a DFT based calculation was performed to measure the band edge positions of the pure and Fe doped ZnO nanostructures, and the obtained results are well supported by the experimental results.  相似文献   

10.
Molecular dynamics simulations have been used to investigate the morphology and mobility of platinum nanoparticles of various sizes supported by carbon materials. The embedded-atom method was used to model Pt-Pt interactions, and the Lennard-Jones potential was used to model the Pt-C interactions. The C?atoms in the supports were held fixed during the simulations. The supports considered were a single graphite sheet and three bundles of carbon nanotubes. Three sizes of Pt nanoparticles were considered: 130?atoms, 249?atoms, and 498?atoms (Pt(130), Pt(249), and Pt(498) respectively). It was found that for all three sizes, diffusion coefficients were approximately one order of magnitude higher for graphite-supported nanoparticles than for carbon nanotube-supported nanoparticles. In addition, increasing the size of the nanoparticle decreased its diffusion coefficient, with Pt(130) having the highest and Pt(498) the lowest diffusion coefficients. More interestingly, we found that for the Pt nanoparticles of all three sizes the diffusion coefficient increases as temperature increases, reaches a maximum at the melting temperature of the nanoparticle, and then decreases. The melting temperature was found to be strongly dependent on the particle size, but only slightly dependent on the features of the supports. While the size of the nanoparticle was seen to affect the particles' mobility, it did not significantly affect their structure. The nanoparticles supported by graphite have density profiles that indicate a highly ordered, fcc-like structure, while the particles supported by carbon nanotubes have a more disordered structure. An order parameter confirms that the nanoparticles' structure depends on the support morphology.  相似文献   

11.
In this work, a phosphine‐based covalent organic framework (Phos‐COF‐1) is successfully synthesized and employed as a template for the confined growth of broad‐scope nanoparticles (NPs). Ascribed to the ordered distribution of phosphine coordination sites in the well‐defined pores, various stable and well‐dispersed ultrafine metal NPs including Pd, Pt, Au, and bimetallic PdAuNPs with narrow size distributions are successfully prepared as determined by transmission electron microscopy, X‐ray photoelectron spectroscopy, inductively coupled plasma, and powder X‐ray diffraction analyses. It is also demonstrated that the as‐prepared Phos‐COF‐1‐supported ultrafine NPs exhibit excellent catalytic activities and recyclability toward the Suzuki–Miyaura coupling reaction, reduction of nitro‐phenol and 1‐bromo‐4‐nitrobenzene, and even tandem coupling and reduction of p‐nitroiodobenzene. This work will open many new possibilities for preparing COF‐supported ultrafine NPs with good dispersity and stability for a broad range of applications.  相似文献   

12.
Sol-gel synthesized SnO2 nanoparticles with an average size of 2.0 nm obtained at 373 K were gradually annealed to 673 K in air for 25 minutes. Sequentially taken transmission electron microscopy (TEM) images showed that particle agglomeration of these non-matrix SnO2 nanocrystals was a very slow process. The blue shifts of the band gap (approximately 2.3 eV) obtained from the optical absorbance spectra were matched with the theoretical results of the size related excitonic binding energies. These calculations also supported the observed slow grain growth. The depth sensitive hardness measurements of the thin films indicated hardness in the range of 5.03 GPa to 6.79 GPa. These undoped and non-matrix SnO2 nanoparticles were also investigated with the X-ray photoelectrons spectroscopy (XPS), atomic force microscope (AFM), X-ray diffraction spectroscopy (XRD), and ac impedance analyzer.  相似文献   

13.
直接以碱溶性毛竹半纤维素为稳定剂、葡萄糖为还原剂,在水介质中绿色合成银纳米粒子,讨论了合成条件对银纳米粒子的形成和储存稳定性的影响,表征了银纳米粒子-半纤维素复合物经热处理后获得的Ag-C复合物的物理化学特性,并讨论了银纳米粒子的可能形成机理。在恒定其他反应条件下,延长反应时间会有更多银纳米粒子生成,但过度延长反应时间会使银纳米粒子发生团聚而生成大颗粒的粒子;高的葡萄糖浓度、反应温度和初始半纤维素用量会加快银纳米粒子的生成。银纳米粒子的平均粒径和粒径分布范围均随半纤维素用量的增大而减小,而银纳米粒子在4℃的储存稳定性随半纤维素用量的增大而增强。银纳米粒子-半纤维素复合物在空气气氛中300℃热处理1h后获得的Ag-C复合物中同时存在金属态的银和氧化态的银。半纤维素中呈电负性的大量自由羟基和少量羧基可能对银纳米粒子的形成起至关重要的作用。  相似文献   

14.
The deliberate tailoring of nanoparticles supported on oxides, dispersed in dendrimers and encapsulated in monolayer shells could lead to novel catalytic applications. The study of core–shell assembled gold or alloy nanoparticles for electrocatalytic oxidation of carbon monoxide and methanol stems, in part, from recent insights in core–shell reactivities and, in part, from surprising findings of catalytic activities of oxide‐supported gold nanoparticles. Monolayer‐encapsulated metallic nanoparticles serve as intriguing model building blocks towards catalysts. Whether such core–shell nanoparticles can in general be developed into aggregation‐ and poison‐resistant catalysts of high catalytic activities rests with our capabilities in catalytic activation and structural manipulation.  相似文献   

15.
A nanoscale range of surface feature curvatures where lipid membranes lose integrity and form pores has been found experimentally. The pores were experimentally observed in the l-alpha-dimyristoyl phosphatidylcholine membrane around 1.2-22 nm polar nanoparticles deposited on mica surface. Lipid bilayer envelops or closely follows surface features with the curvatures outside of that region. This finding provides essential information for the understanding of nanoparticle-lipid membrane interaction, cytotoxicity, preparation of biomolecular templates and supported lipid membranes on rough and patterned surfaces.  相似文献   

16.
A magnetic nanocomposite of ordered mesoporous carbon (CMK-3) decorated with nickel nanoparticles was synthesized successfully by a simple chemistry method. Nickel nanoparticles were prepared and uniformly supported on ordered mesoporous carbon CMK-3 by reduction route with CMK-3 as a reducing agent at 673 K. The Ni/CMK-3 composite materials were characterized by powder X-ray diffraction, nitrogen sorption, and transmission electron microscopy. As-prepared nickel nanoparticles supported on CMK-3 were crystalline with a face-center-cubic phase and a size distribution ranging from 10 to 60 nm. The BET special surface area and pore volume of Ni/CMK-3 were as high as 797 m2 g(-1) and 0.72 cm3 g(-1), respectively. The formation mechanism of the nickel nanoparticles outside the surface of CMK-3 was preliminarily discussed. The hysteresis loops of the CMK-3 decorated with nickel nanoparticles were measured by vibrating sample magnetometer (VSM), and the results showed that the composite was ferromagnetism with the saturated magnetization of 15 emu/g, and the coercivity value of 214 Oe. Furthermore, the application of Ni/CMK-3 as magnetically separable adsorbent for vitamin B2 was primarily examined in this study.  相似文献   

17.
Diatomite-supported/unsupported magnetite nanoparticles were prepared by co-precipitation and hydrosol methods, and characterized by X-ray diffraction, nitrogen adsorption, elemental analysis, differential scanning calorimetry, transmission electron microscopy and X-ray photoelectron spectroscopy. The average sizes of the unsupported and supported magnetite nanoparticles are around 25 and 15 nm, respectively. The supported magnetite nanoparticles exist on the surface or inside the pores of diatom shells, with better dispersing and less coaggregation than the unsupported ones. The uptake of hexavalent chromium [Cr(VI)] on the synthesized magnetite nanoparticles was mainly governed by a physico-chemical process, which included an electrostatic attraction followed by a redox process in which Cr(VI) was reduced into trivalent chromium [Cr(III)]. The adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption followed a pseudo-second-order model. The adsorption data of diatomite-supported/unsupported magnetite fit well with the Langmuir isotherm equation. The supported magnetite showed a better adsorption capacity per unit mass of magnetite than unsupported magnetite, and was more thermally stable than their unsupported counterparts. These results indicate that the diatomite-supported/unsupported magnetite nanoparticles are readily prepared, enabling promising applications for the removal of Cr(VI) from aqueous solution.  相似文献   

18.
Ren G  Xing Y 《Nanotechnology》2006,17(22):5596-5601
A new technique was developed for the deposition of colloidal metal nanoparticles on carbon nanotubes. It involves fast evaporation of a suspension containing sonochemically functionalized carbon nanotubes and colloidal nanoparticles. It was demonstrated that metallic nanoparticles with different sizes and concentrations can be deposited on the carbon nanotubes with only a few agglomerates. The technique does not seem to be limited by what the nanoparticles are, and therefore would be applicable to the deposition of other nanoparticles on carbon nanotubes. PtPd and CoPt(3) alloy nanoparticles were used to demonstrate the deposition process. It was found that the surfactants used to disperse the nanoparticles can hinder the nanoparticle deposition. When the nanoparticles were washed with ethanol, they could be well deposited on the carbon nanotubes. The obtained carbon nanotube supported metal nanoparticles were characterized by transmission electron microscopy, energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, and cyclic voltammetry.  相似文献   

19.
In order to utilize the photocatalytic function of TiO2 nanoparticles in materials manufactured from organic polymeric compounds, such as paper, resins, and textiles, TiO2 nanoparticles supported on aluminosilicate, which contained 1, 5, and 10 wt% of TiO2 were prepared by mixing commercial TiO2 nanoparticles and porous aluminosilicate at pH 7 in a cationic surfactant aqueous solution. Most of the supported TiO2 nanoparticles on the aluminosilicate surface were observed by TEM–EDS (energy depressive X-ray spectroscopy) analysis. TiO2 nanoparticles supported on aluminosilicate reduced the formaldehyde concentration from 20 to 0 ppm after UV irradiation for 20 h; the reduction of formaldehyde concentration under UV irradiation was obviously different from that in the dark. Moreover, a paper mixed with 20 wt% of TiO2 nanoparticles supported on aluminosilicate bleached the stains colored with cigarette tar after UV irradiation for 6 h. However, the paper maintained its initial tensile strength even after UV irradiation for 1 year; in contrast, the paper mixed with a simple dry mixture of TiO2 powder and aluminosilicate lost approximately half of its initial tensile strength after a year. TiO2 nanoparticles supported on aluminosilicate could exhibit photocatalytic activity without decomposing the organic polymeric compounds.  相似文献   

20.
The ZnO/MgO solids were prepared by colloidal technique which involves the deposition of preformed colloidal ZnO nanoparticles on magnesia. The morphology of ZnO nanoparticles was investigated by transmission electron microscopy and UV-Vis absorption and diffuse reflectance spectroscopy. We found a good agreement between the average radius and the particle size distribution of the ZnO nanoparticles obtained by both methods. It was shown the ability to control the size of the supported ZnO nanoparticles (3.8-4.4nm) by varying pH of the colloidal solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号