首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
带参的三次三角多项式样条曲线   总被引:3,自引:0,他引:3  
给出了带有参数λ的三次三角多项式样条曲线.与二次B样条曲线类似,曲线的每一段由相继的三个控制顶点生成;对于等距节点,在一般情形下,曲线达到了C1连续;而当λ=1时,曲线达到了C3连续.λ有明确的几何意义,λ越大,曲线越逼近控制多边形.实例表明,所给曲线为曲线/曲面的设计提供了一种有效的方法.  相似文献   

2.
3.
4.
目的 为了同时解决传统多项式B样条曲线在形状调控、精确表示常见工程曲线以及构造插值曲线时的不足,提出了一类集多种特性的三次三角伪B样条。方法 首先构造了一组带两个参数的三次三角伪B样条基函数,然后在此基础上定义了相应的参数伪B样条曲线,并讨论了该曲线的特性及光顺性问题,最后研究了相应的代数伪B样条,并给出了最优代数伪B样条的确定方法。结果 参数伪B样条曲线不仅满足C2连续,而且无需求解方程系统即可自动插值于给定的型值点。当型值点保持不变时,插值曲线的形状还可通过自带的两个参数进行调控。在适当条件下,该参数伪B样条曲线可精确表示圆弧、椭圆弧、星形线等常见的工程曲线。相应的代数伪B样条具有参数伪B样条曲线类似的性质,利用最优代数伪B样条可获得满意的插值效果。结论 所提出的伪B样条同时解决了传统多项式B样条曲线在形状调控、精确表示常见工程曲线以及构造插值曲线时的不足,是一种实用的曲线造型方法。  相似文献   

5.
有理三次三角Hermite插值样条曲线及其应用   总被引:1,自引:1,他引:1       下载免费PDF全文
给出一种有理三次三角Hermite插值样条曲线,具有三次Hermite插值样条相似的性质。该样条含有三角函数和形状参数,利用形状参数的不同取值可以调控插值曲线的形状,甚至不用解方程组,就能使曲线达到C2连续。此外,选择合适的控制点和形状参数,这种样条可以精确表示星形线和四叶玫瑰线等超越曲线。  相似文献   

6.
曲率连续的三角B样条曲线与曲面   总被引:6,自引:0,他引:6  
给出了一种二次参数三角样条曲线,基函数由一组特殊的二次三角多项式组成;曲线的每一段由三个控制顶点生成,不仅具有二次均匀B样条曲线的端点性质,而且具有更好的逼近性、整体达到曲率连续。该曲线(面)可用于曲线曲面的造型。  相似文献   

7.
B样条曲线能对多项式参数曲线提供有效的控制,但是它不能表示一些超越曲线,因此,很多文献提供了新的模型来构造曲线,但是这些模型要么只能表示低阶曲线,要么不能表示圆的渐开线和圆锥螺线.对此,在空间Ωk=span{cost,sint,tcost,tsint,1,t,t^2,…,t^(k-1)}(k≥5)中构造一类曲线,称为节点序列丁上的代数三角撬合的k阶样条曲线(代数三角样条曲线),该类曲线具有很多与B样条曲线类似的性质,利用这些性质可以通过嵌入新节点对曲线进行逼近,并且可以精确表示圆锥螺线、圆的渐开线等超越曲线.  相似文献   

8.
拟三次三角样条插值曲线与曲面   总被引:2,自引:0,他引:2  
在构造插值曲线与曲面时,传统的方法多基于多项式函数空间,而基于三角函数空间也能构造插值曲线与曲面.首先基于函数空间Ω =span{1,sint,cost,sin2t,cos2t}构造了一种样条插值曲线与曲面,称之为拟三次三角样条插值曲线与曲面.该曲线与曲面不仅满足C2连续,而且直接插值于给定的控制顶点,避免了通过方程组反求控制顶点.进一步地,为了使所构造的拟三角样条插值曲线与曲面具有局部可调性,利用奇异混合技术在拟三次三角样条插值曲线与曲面中引入了局部形状参数,修改某些形状参数的取值可实现对插值曲线与曲面的局部调整,为样条插值曲线与曲面的构造提供了两种新方法.  相似文献   

9.
给出了一种带形状参数的三次三角Hermite插值样条曲线,具有标准三次Hermite插值样条曲线完全相同的性质。给定插值条件时,样条曲线的形状可通过改变形状参数的取值进行调控。在适当条件下,该样条曲线对应的Ferguson曲线可精确表示椭圆、抛物线等工程曲线。通过选择合适的形状参数,该插值样条曲线能达到[C2]连续,而且其整体逼近效果要好于标准三次Hermite插值样条曲线。  相似文献   

10.
N次三角多项式均匀B样条基组成的样条曲线可表示直线、抛物线、椭圆、螺旋线。本文介绍了带形状参数的三角多项式均匀B样条,最后利用形状参数为零的带形状参数的三角多项式均匀B样条来绘制椭圆和螺旋线,体现了该类方法下绘制曲线在CAGD中的有效性  相似文献   

11.
文献8使用二进小波变换提取信号边缘特征,根据信号特征点的值和导数值用三次埃米特多项式进行插值重构。该文分析了文献8存在的两个问题,并针对这两个问题进行改进,即在二进小波变换和插值重构时使用同一种函数———三角样条小波函数,这样才能体现出信号处理的本质。文章作者曾提出的三角样条小波正好同时具有作为小波函数和插值函数双重作用,大大提高信号重构质量。就信噪比和相对误差两项指标与Mallat算法和文献8算法进行了比较,效果明显。  相似文献   

12.
高精度三次参数样条曲线的构造   总被引:12,自引:0,他引:12  
张彩明 《计算机学报》2002,25(3):262-268
构造参数样条曲线的关键是选取节点,该文讨论了GC^2三次参数样条曲线需满足的连续性方程,提出了构造GC^2三次参数样条曲线的新方法,在讨论了平面有序五点确定一组三次多项式函数曲线,平面有序六点唯一确定一条三次多项式函数曲线的基础上,提出了计算相邻两区间上的节点的算法,构造的插值曲线具有三次多项式函数精,该文还以实例对新方法与其它方法构造的插值曲线的精度进行了比较。  相似文献   

13.
G2三次Hermite样条曲线形状的交互修改   总被引:4,自引:1,他引:4  
构造了一种G2连续的三次Hermite样条曲线的表示形式,并提出了一种Hermite样条曲线形状修改和形状调整方法,通过直接调整曲线上的点的位置,从而达到调整曲线形状的目的。通过大量实例的验证和实际用户的使用表明,所提出的方法曲线形状交互修改简便可行,稳定性好。  相似文献   

14.
针对样条曲线曲面构造及其在图像放缩中的应用问题,在三角函数空间{1,t,sint,cost,sin2 t,cos2 t}中构造一类带有形状参数的三角B样条基函数,并定义相应的三角B样条曲线和曲面,分析该曲线曲面的性质以及形状参数对曲线曲面形状的调节作用。拓宽形状参数的取值,构造了满足C2连续且可以直接插值控制顶点的三角B样条插值曲线和曲面,并将其应用于图像放缩中。实例说明了所构造的三角B样条曲线曲面在曲线曲面造型和图像放缩方面有较好应用。  相似文献   

15.
基于约束三次样条插值函数及其应用   总被引:1,自引:0,他引:1  
三次样条插值算法的稳定性和光滑性,使它成为在已知点之间进行插值的一种有效算法。但是它不可避免在中间点产生振动和越界现象,而是否越界对于许多工程应用来说又是非常关键的。结合算例分析了基于约束三次样条插值函数算法的特性:这种算法将样条插值算法的光滑性和线性插值算法的稳定性有机结合在一起,得到更能反映实际问题特征的插值函数,很好地克服了振动和越界现象,具有一定的工程价值。  相似文献   

16.
多形状参数的三次非均匀三角多项式曲线   总被引:3,自引:0,他引:3  
对于非均匀节点向量给出了一类带多个形状参数的三次三角多项式曲线,这类曲线具有三次多项式B样条的许多重要性质:对非重节点为C2-连续,对均匀节点则为C3-连续,能直接表示椭圆.根据形状参数的各种不同取值,人们既能整体、又能局部地调控这类曲线的形状.此外,还讨论了多形状参数的三角Bézier曲线的情况.  相似文献   

17.
带多形状参数的三角多项式均匀 B样条曲线曲面   总被引:1,自引:0,他引:1  
由于在进行几何外形设计时对曲线曲面的局部调控能力要求越来越高,为了给设计者们提供更丰富的方法,利用分段积分的思想构造了一类带多个形状参数的三角多项式均匀B样条曲线曲面,并讨论了这类曲线曲面所具有的重要性质.通过改变形状参数的取值来整体或局部调控曲线曲面形状,随着曲线阶数的升高扩展形状参数的取值范围;通过公式推导给出了曲...  相似文献   

18.
对于给定的有序插值点列,给出了构造一类三角多项式插值曲线的方法。三角多项式曲线的控制点直接由插值点列计算产生,避免了求解方程组。所构造的插值曲线可作局部形状修改且具有G2m-1连续性。  相似文献   

19.
双三次B样条曲面的G1连续条件   总被引:10,自引:4,他引:10  
讨论并得到关于两个双三次非均匀内部单节点B样条曲面片G^1连续的充分必要条件,以及在公共边界线上控制向量的本征条件。这些条件直接由两个非均匀B样条曲面的控制向量表示。并证明了用单节点双三次非均匀B样条不能构造出具有局部性质的曲面模型。  相似文献   

20.
基于空间{1,t,sin t,cos t,sin~2t}提出了一类带形状参数的类三次代数三角Hermite参数样条曲线。该曲线不仅具有标准三次Hermite参数样条曲线的性质,而且在适当条件下能够精确表示圆、椭圆、抛物线等工程曲线。在给定插值条件时还可通过改变形状参数的取值对曲线的形状进行调控。同时,还基于光顺准则建立求解最优形状参数的数学模型,根据实际需要,该模型所求的形状参数能使得曲线达到C~1或C~2连续。实例表明,利用模型求解的最优形状参数能保证曲线具有良好的光顺性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号