首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel design of cone-shaped tubular segmented-in-series solid oxide fuel cell (SOFC) stack is presented in this paper. The cone-shaped tubular anode substrates are fabricated by slip casting technique and the yttria-stabilized zirconia (YSZ) electrolyte films are deposited onto the anode tubes by dip coating method. After sintering at 1400 °C for 4 h, a dense and crack-free YSZ film with a thickness of about 7 μm is successfully obtained. The single cell, NiO-YSZ/YSZ (7 μm)/LSM-YSZ, provides a maximum power density of 1.78 W cm−2 at 800 °C, using moist hydrogen (75 ml min−1) as fuel and ambient air as oxidant.A two-cell-stack based on the above-mentioned cone-shaped tubular anode-supported SOFC is fabricated. Its typical operating characteristics are investigated, particularly with respect to the thermal cycling test. The results show that the two-cell-stack has good thermo-mechanical properties and that the developed segmented-in-series SOFC stack is highly promising for portable applications.  相似文献   

2.
Anode-supported cone-shaped tubular solid oxide fuel cells (SOFCs) are successfully fabricated by a phase inversion method. During processing, the two opposite sides of each cone-shaped anode tube are in different conditions--one side is in contact with coagulant (the corresponding surface is named as “W-surface”), while the other is isolated from coagulate (I-surface). Single SOFCs are made with YSZ electrolyte membrane coated on either W-surface or I-surface. Compared to the cell with YSZ membrane on W-surface, the cell on I-surface exhibits better performance, giving a maximum power density of 350 mW cm−2 at 800 °C, using wet hydrogen as fuel and ambient air as oxidant. AC impedance test results are consistent with the performance. The sectional and surface structures of the SOFCs were examined by SEM and the relationship between SOFC performance and anode structure is analyzed. Structure of anodes fabricated at different phase inversion temperature is also investigated.  相似文献   

3.
A low pressure injection molding (LPIM) technique is successfully developed to fabricate porous NiO–YSZ anode substrates for cone-shaped tubular anode-supported solid oxide fuel cells (SOFCs). The porosity and microstructure of the anode samples prepared with different amount of pore formers are investigated through the Archimedes method and SEM analysis. Experimental results show that with 15 wt.% paraffin as plasticizer, porosity of the NiO–YSZ substrates sintered at 1400 °C is proportional to the amount of graphite as pore former, and proper porosities can be obtained with or without 5 wt.% graphite. NiO–YSZ/YSZ/LSM–YSZ single cells are assembled and tested to demonstrate the feasibility of the LPIM technique. At 800 °C, with moist hydrogen (75 ml min−1) as fuel and ambient air as oxidant, the cell with the anode substrate fabricated with 5 wt.% pore former shows a maximum power density of 531 mW cm−2, while the cell without any pore former, 491 mW cm−2. Two of the single cells (without graphite) are applied to assemble a two-cell-stack which gives an open circuit voltage of 1.75 V and a maximum output power of 5.32 W, at operating temperature of 800 °C.  相似文献   

4.
An La0.6Sr0.4Co0.2Fe0.8O3–La0.8Sr0.2MnO3 (LSCF–LSM) multi-layer composite cathode for solid oxide fuel cells (SOFCs) was prepared on an yttria-stabilized zirconia (YSZ) electrolyte by the screen-printing technique. Its cathodic polarization curves and electrochemical impedance spectra were measured and the results were compared with those for a conventional LSM/LSM–YSZ cathode. While the LSCF–LSM multi-layer composite cathode exhibited a cathodic overpotential lower than 0.13 V at 750 °C at a current density of 0.4 A cm−2, the overpotential for the conventional LSM–YSZ cathode was about 0.2 V. The electrochemical impedance spectra revealed a better electrochemical performance of the LSCF–LSM multi-layer composite cathode than that of the conventional LSM/LSM–YSZ cathode; e.g., the polarization resistance value of the multi-layer composite cathode was 0.25 Ω cm2 at 800 °C, nearly 40% lower than that of LSM/LSM–YSZ at the same temperature. In addition, an encouraging output power from an YSZ-supported cell using an LSCF–LSM multi-layer composite cathode was obtained.  相似文献   

5.
This paper concerns the stability of anode-supported solid oxide fuel cells (SOFCs), operated with fuel mixtures of methane–CO2 and methane–air. Stability, which was evaluated in terms of voltage decrease at constant current density, was affected by coke deposits. Chemically inert anode barrier layers were shown to enhance stability and to slow catalytic endothermic reforming reactions within the Ni–YSZ anode that otherwise caused deleterious temperature variations and cell cracking. Increasing the amount of CO2 added to CH4 fuel led to a wider stable operating range, yet had relatively little effect on SOFC performance. Button cells operated at 800 ° C with fuel streams of 75% CH4 and 25% CO2 achieved maximum power densities above 1 W/cm2. Adding air to methane also increased stability. In the case of air addition, SOFC temperature increased as a consequence of exothermic partial-oxidation reforming chemistry. Models were developed to predict temperature and gas-composition profiles within the button cells. The simulation results were used to assist interpretation of the experimental observations.  相似文献   

6.
Solid oxide fuel cells (SOFC), with its ability to use hydrocarbon fuels and capability to offer highest efficiency, have attracted great attention in India in recent years as an alternative energy generation system for future. But a great deal of problems associated with SOFC is needed to be solved before it can find commercial application. The relatively high operating temperature of 800-1000 °C of SOFC imposes a stringent requirement on materials that significantly increases the cost of SOFC technology. Reducing the operating temperature of an SOFC to below 800 °C can reduce degradation of cell components, improve flexibility in cell design, and lower the material and manufacturing cost by the use of cheap and readily available materials such as ferritic stainless steel. The operating temperature can be reduced by two possible approaches: (i) developing alternative electrolyte materials with high ionic conductivity at lower temperature, and (ii) developing much thinner and denser electrolyte layer such that the ohmic losses are minimised.In this work we report the use of inexpensive Electrophoretic deposition (EPD) technique in making about 10 micron thin and dense YSZ electrolyte on NiO-YSZ substrate. The effect of different operating parameters such as applied voltage, deposition time etc have been optimised during deposition from YSZ suspension in acetylacetone. The YSZ/NiO-YSZ bi-layers were then co-sintered at 1450 °C for 5 h. The single SOFC cells were then fabricated by brush painting LSM:YSZ (50:50) paste on the electrolyte layer followed by sintering at 1200 °C for 2 h. The single SOFC cell when tested using H2 as fuel and ambient air as oxidant exhibited an open circuit voltage (OCV) of 1.03 V and the peak power density of about 624 mW/cm2 at 800 °C.  相似文献   

7.
An effective and facile method has been developed to manufacture anode support solid oxide fuel cells in a multimode domestic microwave oven with selective susceptors. Anode support substrate pellets are prepared by an uniaxial pressing method, and then a thin YSZ electrolyte film is coated by a spray coating method. The electrolyte thickness is kept less than 10 m. The anode supported electrolyte is co-sintered being sandwiched by two spacers and two susceptors in the microwave oven. A cathode is then screen-printed onto the sintered dense electrolyte film and sintered again in the microwave oven with only one spacer and one susceptor. The whole solid oxide fuel cell is sintered at lower temperatures compared to conventional thermal sintering temperature. The performance of the present solid oxide fuel cell is measured in an intermediate temperature range of 650–800 °C. The maximum power densities of 0.09, 0.12, 0.2 and 0.26 W cm−2 are obtained at operating temperatures of 650, 700, 750 and 800 °C, respectively.  相似文献   

8.
NiO/yttria-stabilized zirconia (YSZ) anode substrates were fabricated at two compaction pressures of 200 and 1000 MPa, the particle size distributions of NiO and YSZ were investigated with powders treated under different conditions using a laser scattering technique (Mastersizer 2000, Malvern Instruments) and the effect of compaction pressure on the performance of solid oxide fuel cell (SOFC) anodes was investigated by studying the effect of compaction pressure on compaction density, sintered density, sintering shrinkage behavior, electronic and ionic conductivities. The results of investigation indicated that the SOFC with the anode compacted at a higher pressure exhibited a superior output performance, for example, a single cell with hydrogen as fuel and oxygen as oxidant exhibited excellent maximum power densities of 2.77 and 0.90 W cm−2 at 800 and 650 °C, respectively, which suggested the development of an intermediate temperature SOFC through optimization of anode fabrication parameters.  相似文献   

9.
In this study, an anode-supported hollow-fiber solid oxide fuel cell (SOFC) of diameter 1.7 mm has been successfully fabricated using the phase inversion and vacuum assisted coating techniques. The cell has a special structure consisting of a 12-μm-thick yttria-stabilized zirconia (YSZ) electrolyte film and a Ni-YSZ anode layer which has large finger-like pores on both sides of the hollow-fiber membrane. The hollow-fiber SOFC has an active electrode area of 0.63 cm2 and generates maximum power densities of 124, 287 and 377 mW cm−2 at 600, 700 and 800 °C, respectively, indicating that its use in applications requiring high power density is promising.  相似文献   

10.
A fluidized coal bed-solid oxide fuel cell (FB-SOFC) arrangement is employed for efficient conversion of dry gasified coal into electricity at 850 °C. It consists of an anode-supported tubular solid oxide fuel cell of 24 cm2 active area coupled to a Boudouard gasifier. A minimally fluidized bed of low sulfur (0.15 wt%) Alaska coal is gasified at 930 °C by flowing CO2 to generate CO. The resulting CO fuel is oxidized at the Ni/YSZ cermet anode. The highest cell power density achieved is 0.45 W cm−2 at 0.64 V with 35.7% electrical conversion efficiency based on CO utilization. This power density is the highest reported in the literature for such systems and corresponds to a total power generation of 10.8 W by this cell. Similarly, 48.4% is the highest conversion efficiency measured at a power density of 0.30 W cm−2 and 0.7 V. The open circuit voltages are in good agreement with values expected based on thermodynamic data.  相似文献   

11.
Electromagnetic drop-on-demand direct ceramic inkjet printing (EM/DCIJP) was employed to fabricate dense yttria-stabilized zirconia (YSZ) electrolyte layers on a porous NiO-YSZ anode support from ceramic suspensions. Printing parameters including pressure, nozzle opening time and droplet overlapping were studied in order to optimize the surface quality of the YSZ coating. It was found that moderate overlapping and multiple coatings produce the desired membrane quality. A single fuel cell with a NiO-YSZ/YSZ (∼6 μm)/LSM + YSZ/LSM architecture was successfully prepared. The cell was tested using humidified hydrogen as the fuel and ambient air as the oxidant. The cell provided a power density of 170 mW cm−2 at 800 °C. Scanning electron microscopy (SEM) revealed a highly coherent dense YSZ electrolyte layer with no open porosity. These results suggest that the EM/DCIJP inkjet printing technique can be successfully implemented to fabricate electrolyte coatings for SOFC thinner than 10 μm and comparable in quality to those fabricated by more conventional ceramic processing methods.  相似文献   

12.
This paper deals with the experimental analysis of the performance and degradation issues of a Ni-based anode-supported solid oxide fuel cell fed by a methane-free biogas from dark-anaerobic digestion of wastes by pastry and fruit shops. The biogas is produced by means of an innovative process where the biomass is fermented with a pre-treated bacteria inoculum (Clostridia) able to completely inhibit the methanization step during the fermentation process and to produce a H2/CO2 mixture instead of conventional CH4/CO2 anaerobic digested gas (bio-methane). The proposed biogas production route leads to a biogas composition which avoids the need of introducing a reformer agent into or before the SOFC anode in order to reformate it.In order to analyse the complete behaviour of a SOFC with the bio-hydrogen fuel, an experimental session with several H2/CO2 synthetic mixtures was performed on an anode-supported solid oxide fuel cell with a Ni-based anode. It was found that side reactions occur with such mixtures in the typical thermodynamic conditions of SOFCs (650–800 °C), which have an effect especially at high currents, due to the shift to a mixture consisting of hydrogen, carbon monoxide, carbon dioxide and water. However, cells operated with acceptable performance and carbon deposits (typical of a traditional hydrocarbon-containing biogas) were avoided after 50 h of cell operation even at 650 °C. Experiments were also performed with traditional bio-methane from anaerobic digestion with 60/40 vol% of composition. It was found that the cell performance dropped after few hours of operation due to the formation of carbon deposits.A short-term test with the real as-produced biogas was also successfully performed. The cell showed an acceptable power output (at 800 °C, 0.35 W cm−2 with biogas, versus 0.55 W cm−2 with H2) although a huge quantity of sulphur was present in the feeding fuel (hydrogen sulphide at 103 ppm and mercaptans up to 10 ppm). Therefore, it was demonstrated the interest relying on a sustainable biomass processing which produces a biogas which can be directly fed to SOFC using traditional anode materials and avoiding the reformer component since the methane-free mixture is already safe for carbon deposition.  相似文献   

13.
A slurry spin coating method was developed to fabricate gas-tight anode-supported YSZ films for solid oxide fuel cells (SOFCs). Several technique parameters for slurry spin coating, such as the slurry viscosity, spinning speed, number of coating cycles, film thickness and their effects on YSZ electrolyte film were investigated. SEM results, open-circuit voltage (OCV) values and cell performance indicated that these parameters had crucial and obvious influences on YSZ film quality and fuel cell performance. Based on the optimized parameters, anode-supported YSZ films and several single fuel cells were successfully fabricated and tested. An OCV as high as 1.06 V was obtained at 800 °C and maximum power densities of 900, 1567, 2005 mW cm−2 were achieved at 700, 750, 800 °C, respectively, using hydrogen as fuel and ambient air as oxidant.  相似文献   

14.
A dense single-layer YSZ film has been successfully fabricated by a spin smoothing method. Followed by a simplified slurry coating, an additional spin smoothing process was conducted to obtain a thinner and smoother film. By employment of high-viscosity slurry including high YSZ content, the film has a suitable thickness by a single coating cycle. With Sm0.2Ce0.8O1.9 (SDC)-impregnated La0.7Sr0.3MnO3 (LSM) cathode and porous NiO–YSZ anode, single solid oxide fuel cell (SOFC) based on an 8-μm-thick YSZ film was obtained. Open-circuit voltage (OCV) of the cell was 1.04 V at 800 °C, and maximum power densities were 676, 965 and 1420 mW cm−2 at 700, 750 and 800 °C, respectively, using H2 at a flow rate of 40 mL min−1 as fuel and ambient air as oxidant. The power density could be increased to 1648 mW cm−2 at 800 °C when the flow rate of H2 was enhanced to 200 mL min−1.  相似文献   

15.
Dense yttria-stabilized zirconia (YSZ) electrolyte films were successfully fabricated onto anode substrates using a modified dry pressing process. The film thickness was uniform, and could be readily controlled by the mass of the nanocrystalline YSZ powders. The electrolyte films adhered well to the anode substrates by controlling the anode composition. An anode-supported solid oxide fuel cell (SOFC) with a dense YSZ electrolyte film of 8 μm in thickness was operated at temperatures from 700 to 800 °C using humidified (3 vol% H2O) hydrogen as fuel and air as oxidant. An open circuit voltage of 1.06 V and a maximum power density of 791 mW cm−2 were achieved at 800 °C. The results indicate that the gas permeation through the electrolyte film was negligible, and that good performance can be obtained by this simple and cost-effective technique which can significantly reduce the fabrication cost of SOFCs.  相似文献   

16.
We have developed a Co-free solid oxide fuel cell (SOFC) based upon Fe mixed oxides that gives an extraordinary performance in test-cells with H2 as fuel. As cathode material, the perovskite Sr0.9K0.1FeO3−δ (SKFO) has been selected since it has an excellent ionic and electronic conductivity and long-term stability under oxidizing conditions; the characterization of this material included X-ray diffraction (XRD), thermal analysis, scanning microscopy and conductivity measurements. The electrodes were supported on a 300-μm thick pellet of the electrolyte La0.8Sr0.2Ga0.83Mg0.17O3−δ (LSGM) with Sr2MgMoO6 as the anode and SKFO as the cathode. The test cells gave a maximum power density of 680 mW cm−2 at 800°C and 850 mW cm−2 at 850 °C, with pure H2 as fuel. The electronic conductivity shows a change of regime at T ≈ 350 °C that could correspond to the phase transition from tetragonal to cubic symmetry. The high-temperature regime is characterized by a metallic-like behavior. At 800 °C the crystal structure contains 0.20(1) oxygen vacancies per formula unit randomly distributed over the oxygen sites (if a cubic symmetry is assumed). The presence of disordered vacancies could account, by itself, for the oxide-ion conductivity that is required for the mass transport across the cathode. The result is a competitive cathode material containing no cobalt that meets the target for the intermediate-temperature SOFC.  相似文献   

17.
Operation of cone-shaped anode-supported segmented-in-series solid oxide fuel cell (SIS-SOFC) stack directly on methane is studied. A cone-shaped solid oxide fuel cell stack is assembled by connecting 11 cone-shaped anode-supported single cells in series. The 11-cell-stack provides a maximum power output of about 8 W (421.4 mW cm−2 calculated using active cathode area) at 800 °C and 6 W (310.8 mW cm−2) at 700 °C, when operated with humidified methane fuel. The maximum volumetric power density of the stack is 0.9 W cm−3 at 800 °C. Good stability is observed during 10 periods of thermal cycling test. SEM-EDX measurements are taken for analyzing the microstructures and the coking degrees.  相似文献   

18.
Thin-film solid oxide fuel cells (SOFCs) with large (5-mm square) membranes and ultra-thin La0.6Sr0.4Co0.8Fe0.2O3−δ (LSCF) cathodes have been fabricated and their electrochemical performance was measured up to 500 °C. A grid of plated nickel on the cathode with 5–10 μm linewidth and 25–50 μm pitch successfully supported a roughly 200-nm-thick LSCF/yttria-stabilized zirconia/platinum membrane while covering less than 20% of the membrane area. This geometry yielded a maximum performance of 1 mW cm−2 and 200 mV open-circuit voltage at 500 °C. Another approach toward realizing large area fuel cell junctions consists of depositing the membrane on a smooth substrate, covering it with a high-porosity material formed in situ, then removing the substrate. We have used a composite of silica aerogel and carbon fiber as the support, and show that this material can be created in flow channels etched into the underside of a silicon chip bonded to the top of the SOFC membrane. We anticipate these integrated fuel cell devices and structures to be of relevance to advancing low-temperature SOFCs for portable applications.  相似文献   

19.
Tubular cone-shaped Ni-based anode-supported solid oxide fuel cells (SOFCs), with yttria-stabilized zirconia (YSZ) electrolyte and La0.8Sr0.2MnO3 (LSM) cathode, were investigated with Fe catalyst-loaded activated carbon directly filled in as fuel. Three identical single cells were operated at different current and it turned out that larger current resulted in shorter operation life and smaller carbon utilization. A 3-cell-stack, with the segmented cone-shaped cells connected in series, was assembled and tested. A peak power density of 465 mW cm−2 and a volumetric power density of 710 mW cm−3 were achieved at 850 °C. The degradation performance was analyzed according to the electrochemical characterization and SEM-EDX measurement. Based on the experimental results, the potential of developing such direct carbon SOFC into a high performance battery was proposed.  相似文献   

20.
The performance of solid oxide fuel cells (SOFCs) is affected by various polarization losses, namely, ohmic polarization, activation polarization and concentration polarization. Under given operating conditions, these polarization losses are largely dependent on cell materials, electrode microstructures, and cell geometric parameters. Solid oxide fuel cells (SOFC) with yttria-stabilized zirconia (YSZ) electrolyte, Ni–YSZ anode support, Ni–YSZ anode interlayer, strontium doped lanthanum manganate (LSM)–YSZ cathode interlayer, and LSM current collector, were fabricated. The effect of various parameters on cell performance was evaluated. The parameters investigated were: (1) YSZ electrolyte thickness, (2) cathode interlayer thickness, (3) anode support thickness, and (4) anode support porosity. Cells were tested over a range of temperatures between 600 and 800 °C with hydrogen as fuel, and air as oxidant. Ohmic contribution was determined using the current interruption technique. The effect of these cell parameters on ohmic polarization and on cell performance was experimentally measured. Dependence of cell performance on various parameters was rationalized on the basis of a simple analytical model. Based on the results of the cell parameter study, a cell with optimized parameters was fabricated and tested. The corresponding maximum power density at 800 °C was ∼1.8 W cm−2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号