首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
This paper aims to advance research on the use in concrete of a high volume of fly ash, with a high loss on ignition value, aiding in sustainable low carbon footprint construction. To this end, the work explores the benefits that may be achieved in terms of long-term concrete performance from the incorporation of fly ash along with a chemical activator. Durability tests are performed on concrete with an activated hybrid cementitious system: Portland cement (PC) and high volume fly ash with sodium sulfate. The chloride diffusion coefficient significantly decreased over time for the activated system (50% PC - 50% fly ash with added sodium sulfate) compared to the control samples (100% PC and 80% PC - 20% fly ash) at the same water to cementitious material ratio. This behavior is particularly evident in samples cured under controlled laboratory conditions (100% RH and 23 °C). However, outdoor curing increases the permeability for all concretes. Long term carbonation is also investigated under natural exposure conditions, and samples that are cured outdoors exhibit a significant carbonation depth. The compressive strength is correlated with the durability parameters: the durability performance improves as the compressive strength increases, indicating that as is the case for Portland cement (but not always for alkali-activated binders), the microstructural factors which yield high strength are also contributing to durability properties.  相似文献   

2.
This paper describes a study on the durability potential and strength of composite Portland-limestone cement (PLC) concrete mixtures blended with ground granulated blast furnace slag (GGBS) and/or fly ash (FA). Their performance was compared against ordinary Portland cement, plain PLC and Portland-slag cement concrete mixtures. Using the South African Durability Index approach, results indicate reductions in the penetrability of the composite PLC blends compared to the other mixtures. The durability indicators are chloride conductivity, gas (oxygen) permeability and water sorptivity. Compressive strength of the composite PLC mixtures containing both GGBS and FA showed competitive performance with the comparative mixtures, but FA blended PLC mixtures had diminished compressive strength values. The paper also presents considerations on the practical implications of using blended PLC concrete mixtures.  相似文献   

3.
Blended cement pastes are currently used for encapsulation of low level and intermediate level nuclear waste in the UK. However, there is still little information on the long-term durability of those mixes to some chemical attacks. Accelerated testing may predict the long-term durability or at least help the selection of more durable formulations. In this work, blended blastfurnace slag (BFS)/Portland cement (OPC) pastes containing 60, 75 and 90% BFS and pulverised fuel ash (PFA)/OPC pastes with 40, 55 and 75% PFA were cured at 20 and 60°C for 90 days then submitted to natural and accelerated carbonation (5% CO2). The effects of the curing temperature as well as the OPC replacement level on the carbonation ratio are presented. Results showed a good correlation between natural and accelerated carbonation for the pastes studied. Carbonation was found to be governed by the amount of calcium hydroxide available in the mixes before the process started.  相似文献   

4.
This study demonstrates the effects of SiO2 nanoparticles as additives with two different sizes of 15 and 80?nm on compressive strength and porosity of rice husk ash (RHA) blended concrete. Up to 20% of ordinary Portland cement (OPC) was replaced by RHA with average particle size of 5 micron. Also, SiO2 nanoparticles were added to the above mixture at four different weight percentages of 0.5, 1.0, 1.5 and 2.0 and cured in lime solution. The results indicated that compressive strength of Portland cement–nano SiO2–rice husk ash (PC–NS–RHA) ternary blended concrete was considerably increased. Moreover, the total amount of porosity decreased to a minimum with respect to the control concrete. This improvement was observed at all the curing ages and replacement levels, but there was a gain in the optimal point with 20% of RHA plus 2% of 80?nm SiO2 particles at 90 days of curing.  相似文献   

5.
Portland cement blended with waste products such as blast furnace slag and fly ash are frequently used to create more sustainable concrete, but their nanoscale mechanical behavior, particularly after thermal damage, has not been well-studied. Here, nanoindentation experiments confirm that concrete produced with blended cements contains hydration products with nearly identical nanoscale mechanical properties to the hydration products found in concretes produced with ordinary Portland cement. The volume fractions of the hydration products, particularly calcium-silicate-hydrate (C-S-H) phases, are formed in different proportions with the addition of fly ash and blast furnace slag. After exposure to fire damage, the nanoscale behavior of concretes produced with fly ash and slag also matches the nanoscale behavior of conventional concretes. This suggests that any macroscopic differences between fire damage behavior of blended cement concrete and ordinary Portland cement concrete must have origins in a larger length scale.  相似文献   

6.
The aim of this study is to evaluate the effect of high-volume fly ash on some durability characteristics of roller compacted concrete (RCC). In addition to a control mixture without fly ash, two different series of mixtures were prepared by partial replacement of either cement or aggregate with fly ash. The mixtures were designed by a maximum density method. A total of 28 mixtures having four different water/binder ratios (0.30, 0.35, 0.40 and 0.45 by mass) were prepared to determine the optimum water/binder ratio. Among these, seven mixtures containing the optimum water content were selected for further experimental study. It was observed that in the mixtures where cement was substituted with fly ash, increasing the fly ash content adversely affected the durability performance up to 90 days. However, fly ash substitution for a part of the aggregate improved the durability characteristics of the mixture as the amount of fly ash increased.  相似文献   

7.
This paper reports an assessment of the performance of concrete based on a calcium sulfoaluminate–anhydrite–fly ash cement combination. Concretes were prepared at three different w/c ratios and the properties were compared to those of Portland cement and blast-furnace cement concretes. The assessment involved determination of mechanical and durability properties. The results suggest that an advantageous synergistic effect between and ettringite and fly ash (Ioannou et al., 2014) was reflected in the concrete’s low water absorption rates, high sulfate resistance, and low chloride diffusion coefficients. However, carbonation depths, considering the dense ettringite-rich microstructure developed, were higher than those observed in Portland cement concretes at a given w/c ratio. It was concluded that the amount of alkali hydroxides present in the pore solution is as important factor as the w/c ratio when performance of this type of concrete is addressed.  相似文献   

8.
With the increasing use of self-compacting concrete (SCC) its durability has come into focus. Concerning the microstructure of concrete, the porosity in the interfacial transition zone (ITZ) is regarded as a key feature for permeability and durability. Generally, a combination of cement and mineral admixtures is used for the production of SCC. In the present study, ITZ porosity of four SCC mixtures produced with ordinary Portland cement, Portland limestone cement, slag cement and ordinary Portland cement combined with fly ash is analyzed. Additionally, the chloride migration coefficient is determined. ITZ porosity and width of the SCC mixtures are similar. The substantial differences in the chloride migration coefficients show that the binder type has a stronger influence on permeability than the pore volume in the ITZ.  相似文献   

9.
MSW fly ash stabilized with coal ash for geotechnical application   总被引:7,自引:0,他引:7  
The solidification and stabilization of municipal solid waste (MSW) fly ash for the purpose of minimizing the geo-environmental impact caused by toxic heavy metals as well as ensuring engineering safety (strength and soaking durability) are experimentally evaluated. The mixtures of MSW fly ash stabilized with cement and fluidized bed combustion coal fly ash (FCA) were used for unconfined compressive strength tests, leachate tests, and soaking tests. The behavior of soluble salts contained in the MSW fly ash significantly affects strength development, soaking durability, and the hardening reaction of the stabilized MSW fly ash mixtures. The cement stabilization of the MSW fly ash does not have enough effect on strength development and soaking durability. The addition of cement only contributes to the containment of heavy metals due to the high level of alkalinity. When using FCA as a stabilizing agent for MSW fly ash, the mixture exhibits high strength and durability. However, the Cd leachate cannot be prevented in the early stages of curing. Using a combination of cement and FCA as a MSW fly ash stabilizer can attain high strength, high soaking durability, and the containment of heavy metals. The stabilized MSW fly ash with cement and FCA can be practically applied to embankments.  相似文献   

10.
Various activation techniques, such as physical, thermal and chemical were adopted. By adopting these methods of activation, hydration of fly ash blended cement was accelerated and thereby improved the corrosion-resistance and strength of concrete. Concrete specimens prepared with 10%, 20%, 30% and 40% of activated fly ash replacement levels were evaluated for their compressive strengths at 7, 14, 28 and 90 days and the results were compared with ordinary Portland cement concrete (without fly ash). Corrosion-resistance of fly ash cement concrete was studied by using anodic polarization technique. Electrical resistivity and ultrasonic pulse velocity measurements were also carried out to understand the quality of concrete. The final evaluation was done by qualitative and quantitative estimation of corrosion for different systems. All the studies confirmed that upto a critical level of 20–30% replacement; activated fly ash cement improved both the corrosion-resistance and strength of concrete. Chemical activation of fly ash yielded better results than the other methods of activation investigated in this study.  相似文献   

11.
This paper deals with the study of corrosion level of reinforcing steel bars embedded in Portland cement mortars containing different types of fly ash. Fly ashes used were obtained by physico-chemical treatments of an original F class fly ash to modify their magnetic properties and reduce their particle size. An original fly ash (T0) and three types of modified ashes were tested according to treatment duration and magnetic properties (T60, ground fly ash; TNM, non-magnetic fraction; TM, magnetic fraction). Corrosion tests on reinforced mortar specimens with and without different types of fly ashes, cured at 40 °C, and under accelerated carbonation conditions and seawater immersion, have been performed in order to obtain conclusions on durability. From the corrosion point of view the addition of TNM in mortars showed to be much more effective than addition of the original T0 fly ash.  相似文献   

12.
Pozzolans play an important role when added to Portland cement because they usually increase the mechanical strength and durability of concrete structures. The most important effects in the cementitious paste microstructure are changes in pore structure produced by the reduction in the grain size caused by the pozzolanic reactions pozzolanic effect (PE) and the obstruction of pores and voids by the action of the finer grains (physical or filler effect). Few published investigations quantify these two effects. Twelve concrete mixtures were tested in this study: one with Portland cement (control), nine mixtures with 12.5%, 25% and 50% of replacement of cement by fly ash, rice husk ash and limestone filler; two with (12.5+12.5)% and (25+25)% of fly ash and rice husk ash. All the mixtures were prepared with water/binder ratios of 0.35, 0.50, and 0.65. The compressive strength for the samples was calculated in MPa per kg of cement. The remaining contents of calcium hydroxide and combined water were also tested. The results show that the pozzolanic and physical effects have increased as the mineral addition increased in the mixture, being higher after 91 days than after 28 days. When the results for the same strength values are compared (35 and 65 MPa), it was observed that the filler effect (FE) increased more than the pozzolanic effect. The PE was stronger in the binary and ternary mixtures prepared with rice husk ash in proportions of 25% or higher.  相似文献   

13.
Granulated slag from metal industries and fly ash from the combustion of coal are among the industrial by-products and have been widely used as mineral admixtures in normal and high strength concrete. Due to the reaction between calcium hydroxide and fly ash or slag, compared with Portland cement, the hydration of concrete containing fly ash or slag is much more complex. In this paper, by considering the producing of calcium hydroxide in cement hydration and the consumption of it in the reaction of mineral admixtures, a numerical model is proposed to simulate the hydration of concrete containing fly ash or slag. The heat evolution rate of fly ash or slag blended concrete is determined from the contribution of both cement hydration and the reaction of mineral admixtures. Furthermore, a temperature rise in blended concrete is evaluated based on the degree of hydration of cement and mineral admixtures. The proposed model is verified with experimental data on the concrete with different water-to-cement ratios and mineral admixtures substitution ratios.  相似文献   

14.
Thaumasite formation in concrete and mortars containing fly ash   总被引:7,自引:0,他引:7  
Due to recent reports on deterioration of concrete structures, the thaumasite form of sulfate attack has become a subject of study and close investigation. This paper investigates the formation of thaumasite in concrete and mortars containing fly ash. The results show that thaumasite formation can occur within 84 days of exposure to sulfate solutions. High volumes of fly ash can limit or promote thaumasite formation depending on the type of cement used. Thaumasite and ettringite were found among the deterioration products. However, the thaumasite formation in the specimen prepared from sulfate resisting Portland cement was not accompanied by deterioration, except by 50% fly ash addition. The mixtures of Portland limestone cement with 40% fly ash exhibited a very limited thaumasite formation while the mixtures with 50% had no thaumasite at all. It is concluded that thaumasite can also be formed in mixtures incorporating fly ash.  相似文献   

15.
This paper studies the physical properties, compressive strength and drying shrinkage of multi-blended cement under different curing methods. Fly ash, ground bottom ash and undensified silica fume were used to replace part of cement up to 50% by weight. Specimens were cured in air at ambient temperature, water at 25, 40 and 60 °C, sealed with plastic sheeting for 28 days. The results show that absorption and volume of permeable pore space (voids) of blended cement mortars at 28 day under all curing methods tend to increase with increasing silica fume replacement. The compressive strength of blended cement with fly ash and bottom ash was lower than that of Portland cement control at all curing condition while blended cement with silica fume shows higher compressive strength. In addition, the compressive strength of specimens cured with water increased with increasing curing temperature. The drying shrinkage of all blended cement mortar cured in air was lower than that of Portland cement control while the drying shrinkage of blended cement mortar containing silica fume, cured with plastic sealed and water at 25 °C was higher than Portland cement control due to pore refinement and high autogenous shrinkage. However, the drying shrinkage of blended cement mortar containing SF cured with water at 60 °C was lower than that of Portland cement control due to lower autogenous shrinkage and the reduced microporosity of C–S–H.  相似文献   

16.
This study presented CaCl2 as a potential additive activator to develop a new strong, price-competitive CaO-activated GGBFS binder blended with fly ash (CAS 4:4:2) to commercially replace ternary blended cements, which generally consist of 40% Portland cement, 40% GGBFS, and 20% fly ash (wt.%) (PC 4:4:2), widely used for concrete production. Despite CAS 4:4:2 having no clinker cement compound, the addition of CaCl2 not only significantly accelerated reactions of CAS 4:4:2 binders but also largely increased strengths at all curing days. Up to 72 h, the cumulative reaction heat of CAS 4:4:2 with CaCl2 was also reasonably low. Reaction products and microstructures of hardened CAS 4:4:2 pastes were considerably changed after CaCl2 addition. The CaCl2 presence markedly promoted dissolution of the glass phase of GGBFS and fly ash in early days, resulting in more production of reaction products (e.g., C-S-H, hydrocalumite) and pore-size refinement.  相似文献   

17.
The transport of fluid and ions in concrete mixtures is central to many aspects of concrete deterioration. As a result, transport properties are frequently measured as an indication of the durability that a concrete mixture may be expected to have. This paper is the second in a series investigating the performance of high volume fly ash (HVFA) mixtures with low water-to-cementitious ratios (w/cm) that are internally cured. While the first paper focused on strength and shrinkage, this paper presents the evaluation of the transport properties of these mixtures. Specifically, the paper presents results from: rapid chloride migration (RCM), rapid chloride penetration test (RCPT), apparent chloride diffusion coefficient, surface electrical resistivity, and water absorption. The test matrix consisted of mortar samples with two levels of class C fly ash replacement (40% and 60% by volume) with and without internal curing provided with pre-wetted lightweight fine aggregates (LWA). These mixtures are compared to plain ordinary portland cement (OPC) mortars. The results indicate that HVFA mixtures with and without internal curing provide benefits in terms of reduced transport coefficients compared to the OPC mixtures.  相似文献   

18.
Evaluation of Portland limestone cements for use in concrete construction   总被引:1,自引:0,他引:1  
The paper describes a study carried out to examine the performance of concrete produced using combinations of Portland cement (PC) and limestone (LS), covering compositions for Portland limestone cement (PLC) conforming to BS EN 197-1: 2000, and up to 45% LS. In particular, key engineering (mechanical) and durability properties of concrete were studied. The results indicate only minor differences in performance between PC and 15% PLC concretes of the same cement content and water/cement (w/c) ratio (cement = Portland cement + addition). However, there was an adverse effect with increasing LS content beyond 15% of the cement content for many properties. It is shown that for 35 N/mm2 cube strength concrete the adjustment to w/c ratio to match the compressive strength of PC concrete was in the region of 0.08 for each 10% LS added (water curing at 20°C) above this level. Studies of permeation and concrete durability performance, including, initial surface absorption, carbonation resistance, chloride diffusion, freeze/thaw scaling and abrasion resistance, indicate that in general the test concretes followed single relationships with strength for most properties. Consideration is given to the practical implications of the main outcomes of the study.  相似文献   

19.
This study investigates the influence of the curing time on the chloride penetration behavior of concrete produced with different concentrations of rice husk ash. Compressive strength and chloride penetration at 91 days were assessed according to ASTM C1202. Concentrations of 10%, 20% and 30% of rice husk ash were used and the results were compared with a reference mix with 100% Portland cement and with two other binary mixes with 35% fly ash and 50% ground blast furnace slag. Increases in rice husk ash content produced lower Coulomb charge values. Longer curing times reduced Coulomb charges values for all mixes investigated. However, the extent of the effect of curing times on compressive strength and chloride penetration in concrete is related to the type of mineral addition, the concentration of the substitutions used, the w/b ratio and the curing time used. This behavior points at an optimal curing period for each type of binder to meet specific technical and economical criteria, namely durability and compressive strength specifications for the structure.  相似文献   

20.
The influence of high-calcium fly ash and silica fume as a binary and ternary blended cement on compressive strength and chloride resistance of self-compacting concrete (SCC) were investigated in this study. High-calcium fly ash (40–70%) and silica fume (0–10%) were used to replace part of cement at 50, 60 and 70 wt.%. Compressive strength, density, volume of permeable pore space (voids) and water absorption of SCC were investigated. The total charge passed in coulombs was assessed in order to determine chloride resistance of SCC. The results show that binary blended cement with high level fly ash generally reduced the compressive strength of SCC at all test ages (3, 7, 28 and 90 days). However, ternary blended cement with fly ash and silica fume gained higher compressive strength after 7 days when compared to binary blended fly ash cement at the same replacement level. The compressive strength more than 60 MPa (high strength concrete) can be obtained when using high-calcium fly ash and silica fume as ternary blended cement. Fly ash decreased the charge passed of SCC and tends to decrease with increasing fly ash content, although the volume of permeable pore space (voids) and water absorption of SCC were increased. In addition when compared to binary blended cement at the same replacement level, the charge passed of SCC that containing ternary blended cement was lower than binary blended cement with fly ash only. This indicated that fly ash and silica fume can improve chloride resistance of SCC at high volume content of Portland cement replacement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号