首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Process-induced residual stress arises in polymer composites as a result of mismatched resin contraction and fiber contraction during the cure stage. When a curved shell-like composite part is de-molded, the residual stress causes the spring-in phenomenon, in which the enclosed angle of the part becomes smaller than the angle of its mold. In this paper, a new approach is presented to control and reduce the spring-in angle by infusing a small amount of carbon nanofibers (CNFs) together with liquid resin into the glass fiber preform using vacuum assisted resin transfer molding (VARTM) process. The experimental results showed that the spring-in angles of the L-shaped composite specimens were effectively restrained by the CNFs. An analytical model and a 3-D FEA model were developed to predict the spring-in phenomenon and to understand the role of CNFs in reducing the spring-in angle. The models agreed with the experimental results reasonably well. Furthermore, the analytical model explains how the CNF-enhanced dimensional tolerance control is accomplished through the reductions in the matrix’s equivalent coefficient of thermal expansion and linear crosslinking shrinkage.  相似文献   

2.
In this study, a simple two step finite element model is developed to predict the spring-in of C-sections parts made of AS4/8552 composite. The development of resin properties throughout the MRCC were derived using Group Interaction Modelling and the mechanical properties of the composite predicted by using micromechanical models. Important mechanisms during manufacturing that are effective in the formation of residual stresses and shape distortions are defined. The finite element method implemented is composed of two steps before and after the vitrification of the resin. Vitrification is treated as a point at which the material suddenly changes from the rubbery to glassy state with constant properties in each state. The spring-in angles predicted by the finite element analysis are compared to the angles measured on C-section specimens of various lay-ups and thicknesses. The correlation is good showing the validity of the assumptions adopted.  相似文献   

3.
Manufacturing processes for laminated composites often produce parts whose dimensions do not match the mold from which they were made. This distortion is commonly referred to as ‘spring-in’. The amount of spring-in can depend on many factors including the manufacturing process (cure temperature, resin bleed, and applied pressure), the part (geometry, material, thickness, cure shrinkage, thermal expansion and layup sequence), and the tool (surface, thickness and thermal expansion). Much of the current work devoted to spring-in relies on extensive resin characterization. While this approach has been reasonably successful, it does little to assist the designer using material systems that have not been fully characterized (which is not always possible or feasible). This study considers the ability of a linear elastic finite element model to describe and quantify many of the factors contributing to spring-in. The aim of this study is to show that spring-in can be accurately predicted without a complete resin characterization. Numerical predictions based on relatively simple mechanical tests were observed to compare favorably with experimental measurements. Spring-in was dominated by thickness shrinkage, which contributed approximately 3/4 of the measured distortion. The mold stretching contribution diminished with thickness and was negligible for parts thicker than 2.5 mm (0.1 in.). While the material system at hand did not exhibit a fiber volume fraction gradient, its effects were included in the formulation of the model. For materials that have reported a gradient, it was found to account for approximately 10% of the part spring-in.  相似文献   

4.
The thermal aging of a glass matrix composite reinforced by short carbon fibres as well as by ZrO2 particles (hybrid composite) was investigated at temperatures in the range 500–700 °C for exposure durations of 24 h in air. The mechanical properties of as-received and aged samples were evaluated at room temperature by using the three-point flexure chevron notch technique. The fracture toughness values of as-received specimens were in the range 2.6–6.4 MPa m1/2. Fracture toughness was affected by the thermal aging conditions. For thermal aging at temperatures <700 °C, degradation of fibre–matrix interfaces occurred and therefore the apparent fracture toughness and flaw tolerant resistance decreased. For the most severe ageing conditions tested (700 °C/24 h), fracture toughness values dropped to 0.4 MPa m1/2. Significant degradation of the material was detected for this aging condition, mainly characterised by porosity formation in the matrix as a result of softening of the glass and oxidation of the carbon fibres.  相似文献   

5.
为研究模具因素对复合材料纤维体积含量、富树脂以及固化变形的影响,利用热压罐工艺完成了T700/QY9611复合材料V型结构成型试验,对其纤维体积含量、富树脂厚度以及回弹变形进行测量与研究。建立了考虑热载荷、树脂收缩载荷、模具接触、纤维体积含量以及富树脂等因素的复合材料回弹变形预测三维有限元分析模型,定量分析了纤维体积含量梯度和富树脂对回弹变形的影响。研究结果表明:使用阴模模具产生10.0%的纤维体积含量梯度和2.2 mm的富树脂,拐角半径增大后分别减小为6.8%和1.2 mm,模具材料的影响较小;使用阴模成型试验件变形增大21.0%,使用拐角半径较大的阴模,变形减小了9.6%,阴模模具主要通过纤维体积含量和富树脂影响回弹变形;模拟结果表明:V型构件的变形与纤维体积含量梯度和富树脂厚度呈正比例,10%的纤维体积含量梯度导致13.5%的变形差异,3.0 mm厚的富树脂会产生45.8%的变形差异。模拟结果与实验结果对比验证了模型的准确性。  相似文献   

6.
In this paper, a new Zr37Al10Ti12.5Cu11.25Ni9Be20.25 bulk metallic glass is reported. The present alloy was prepared by water quenching in a silica tube of φ10×85 mm. The amorphicity of the quenched bulk samples was examined using X-ray diffraction analysis and optical microscopy. The thermal stability was evaluated by differential scanning calorimetry (DSC) at a heating rate of 10 K/min. The characteristic data of the bulk metallic glass are presented, including glass transition temperature (Tg) and crystallization temperature (Tx). Results show that the present alloy exhibits large glass forming ability. For comparison with the well-known Zr–Ti–Cu–Ni–Be metallic glass, it was found that aluminum has a little effect on the vitrification of the present alloy but influences physical properties. Specifically, Al enhances the Young's modulus by 21.4% and Vickers hardness by 20% and reduces density by 7.2%.  相似文献   

7.
利用固化动力学模型对20 mm厚度和3mm厚度的ZT7H/5429碳纤维复合材料层合板进行了固化模拟,在固化过程中,20 mm厚度平板出现了温度峰值,中心温度与表面温度差不超过6℃,3mm平板温度分布均匀,温度历程与热压罐工艺温度基本一致.利用简化的温度场和等效热膨胀系数对609和90°拐角的Ⅴ型基准试件进行了固化变形模拟,并进行了Ⅴ型基准试件的固化试验.60°和90°拐角试件的固化回弹角的模拟值分别为1.58°和1.18°,试验测得的回弹角的平均值分别为1.59°和1.11°.对Ⅴ型复合材料蒙皮构件进行了固化变形模拟,并得到了补偿过的工装型面,在该工装上成型的试件与设计形状基本一致.  相似文献   

8.
Analysis and experiments on quasi-unidirectional and angle-ply laminate end-notched flexure specimens are presented. The analysis is based on laminated beam theory incorporating first-order shear deformation theory. Compliance and strain-energy release rate determined for relatively thin unidirectional and angle-ply laminate ENF specimens were in good agreement with a previous classical plate theory formulation. For thicker laminates, however, effects of shear deformation on the compliance of the ENF specimen become significant. An experimental study on glass/polyester quasi-unidirectional and angle-ply laminate ENF specimens was conducted. Specifically, [0]6, [±30]5 and [±45]5 laminates with mid-plane delaminations were considered. Experimental compliance data agreed well with analytical predictions. The fracture toughness increased with increased angle θ at the ±θ interface. This is attributed to the fracture work associated with the debonding of transversely oriented fiber bundles in the quasi-unidirectional plies. The angle-ply laminates displayed more yarn debonding than the quasi-unidirectional laminate. For all laminates it was observed that the crack propagated in a non-uniform manner which is correlated with elastic coupling effects with cracked regions of the laminate beams.  相似文献   

9.
The interfacial failure criterion under combined stress state in a glass fiber/epoxy composite is investigated by the cruciform specimen method. Experiments were conducted by using specimens with a fiber whose angle from the loading direction is varied in order to make various stress state of normal and shear at the interface. Finite element analysis is performed to calculate the interfacial stress distribution. By combining the experimental measurement of the specimen stress at the interfacial debonding initiation and the finite element stress analysis, it is possible to obtain the interfacial stress state at interfacial failure. A method to determine the interfacial failure criterion and the interfacial failure initiation location simultaneously is proposed in the present study. We conclude the value of the interfacial shear strength is higher than that of the interfacial normal strength for the material system used in the present study.  相似文献   

10.
The mechanically alloyed (Al + 12.5 at.% Cu)3Zr powders were consolidated by cold isostatic pressing (CIP) and subsequent sintering. Effects of CIP pressure and sintering temperature on the stability of metastable L12 phase and nanocrystalline structure were investigated. Before sintering, the powders were CIPed at 138, 207, 276, and 414 MPa. The relative densities of the CIP compacts were not greatly affected by the CIP pressure. However, the L12 phase of the specimen CIPed at pressures greater than 276 MPa was partially transformed into D023. The optimum consolidation conditions for maintaining L12 phase and nanocrystalline microstructure were determined to be CIP at 207 MPa and sintering at 800 °C for 1 h for which the grain size was 34.2 nm and the relative density was 93.8%. Full density specimens could be prepared by sintering above 900 °C, however, these specimens consisted of L12 and D023 phases. The grain sizes of all the specimens were confirmed by TEM and XRD, and were found to be less than 40 nm. This is one of the smallest grain sizes ever reported in trialuminide intermetallic compounds.  相似文献   

11.
Specimens of ultra-high molecular weight polyethylene have been subjected to flexural fatigue tests at −40° and 23°C, and the temperature of some of the specimens recorded throughout the test. It is found that when the specimen life exceeds 106 cycles, the temperature of the specimen stabilizes. However, if the temperature of the specimen does not reach equilibrium with the testing temperature, the specimen life is short (< 104 cycles). The stabilization of the speciment temperature is related to a critical stress level, which is different for each testing temperature.  相似文献   

12.
In this paper, the interfacial fracture toughness of a flip-chip package subjected to a constant concentrated line load and a bimaterial system under thermal loading condition were evaluated using a unique six-axis submicron tester, a thermal vacuum chamber and FEM modeling coupled with a high density laser moiré interferometry. The six-axis submicron tester was used to provide a constant concentrated line load, whereas the moiré interferometry technique was used to monitor the crack length during the test. In addition, a finite element technique was simultaneously used to determine the near crack tip displacement fields of the specimens. The interfacial fracture toughness and phase angle were computed by using these near tip displacement variables through the analytical energy release rate and phase angle expressions derived by authors. The interfacial fracture toughness and the phase angle of the flip-chip package considered at the interface where the passivated silicon chip meets the underfill are 35 J/m2 and −65°, respectively, while the interfacial fracture toughness and the phase angle of the tested bimaterial specimen at the interface of the molding compound/silicon with the crack length of 3.3 mm under the temperature rise thermal load from room temperature (20°C) to 138°C are 20.02 J/m2 and −54.8°, respectively.  相似文献   

13.
The influence of in-plane fibre orientation on the mode I interlaminar fracture toughness, GIc of unstitched and stitched glass/polyester composites is investigated in this paper. The GIc of planar specimens depends on the fibre orientation, θ in the layers adjacent to the fracture plane, in addition to the property of matrix material. The mode I fracture toughness and fracture behavior of unstitched and stitched 0/0, 30/−30, 45/−45, 60/−60, 90/90 and 0/90 interfaces of unidirectional fibre mats (UD) and 30/−30, 45/−45 and 90/90 interfaces of woven roving mats (WRM) are studied. WRM layer orientation is represented by the direction of warp fibres. Stitching is done by untwisted Kevlar fibre roving of Tex 175 g/km at the stitch densities (number of stitches per unit area) of 10.24 and 20.48 stitches/inch2. The specimens having same stitch density, but different stitch distributions are prepared, and the influence of stitch distribution on GIc is studied. Double cantilever beam (DCB) tests are carried out and the GIc is determined using modified beam theory. The GIc of both unstitched and stitched specimens increases with increase in orientation angle, θ upto 45° above which it decreases. The GIc values of unstitched 45/−45 delamination interface is around 2.4 times that of the unstitched 0/0 interfaces. The influence of fibre orientation on GIc is clearly observed in unstitched specimens, whereas in the stitched specimens, stitching plays an important role in improving the GIc and suppresses the influence of fibre orientation; degree of suppression increases with increasing stitch density. When the value of θ is above 45°, transverse cracks are observed in the delamination interface surrounded by UD layers; while in the delamination interface surrounded by WRM layers, transverse cracks are not initiated irrespective of the fibre orientation angle.  相似文献   

14.
Comparative study of high temperature composites   总被引:5,自引:0,他引:5  
Two classes of composite made using either ceramic matrix with high temperature fibers or carbon/carbon have been used for various applications that require high temperature resistance, over three decades. However, their use has been limited to special applications because of the high costs associated with fabrication. Typically the composites are cured at more than 1000°C, and in most instances the heating has also to be carried out in controlled environments. In addition, because of the high processing temperature, only certain type of expensive fibers can be used with the ceramic matrices. A recently developed inorganic matrix, called polysialate can be cured at temperatures less than 150°C, making it possible to use carbon and glass fibers. Composites made using carbon, glass and combinations of carbon and glass fibers have been tested in bending and tension. This paper presents the comparison of processing requirements and mechanical properties of carbon/carbon composites, ceramic matrix composites made with silicon carbide, silicon nitride and alumina fibers and carbon/polysialate composites. The results indicate that carbon/polysialate composite has mechanical properties comparable to both carbon/carbon and ceramic matrix composites at room and high temperatures. Since the polysialate composites are much less expensive, the authors believe that it has excellent potential for more applications in aerospace, automobile and naval structures.  相似文献   

15.
The effect of β-spodumene additions on the in situ phase formation and abundances in an Al2O3–Al2TiO5 system in the temperature range 1000–1400 °C has been studied by neutron diffraction and differential thermal analysis. Results show that β-spodumene began to decompose by phase separation and partial melting at 1290 °C, followed by complete melting at 1330 °C. Formation of Al2TiO5 was observed to occur at 1310 °C and its abundance increased with temperature. The addition of β-spodumene as a sintering aid did not cause its reaction with alumina or rutile to form additional phases. Addition of β-spodumene in excess of 5 wt% resulted in pronounced vitrification, which partly recrystallised when cooled to room temperature. The temperatures of Al2TiO5 formation and melting of β-spodumene are consistent with the results of differential thermal analysis.  相似文献   

16.
It is well known that angles in composite parts contract as they are cooled down from the curing temperature, this is often referred to as spring-in. It is caused mainly by the significantly different thermal contractions and cure shrinkage's experienced between the fibre direction and the through-thickness direction during the manufacturing process. A number of works have reported on the spring-in of straight angle composite parts. However, little has been done to investigate the distortion of curved flanged composite parts, which will distort differently owing to the introduction of the additional curvature, thus constraint.

In the present work, the distortion of the circularly curved flanged laminates is studied numerically. The finite element method is used to predict the processing-induced distortion of the part with two different approaches. In the first approach, the shear angles of the composite plies are predicted by a draping analysis. The effect of the fibre shearing on the mechanical properties of the laminates is considered in the model used to predict the distortion. The second simplified approach assumes that the in-plane properties of the laminates are isotropic. The results obtained by these two approaches are compared with those obtained experimentally.  相似文献   


17.
Hypervelocity impact can produce unique effects in materials, including crystal structures, microstructures, and properties. Examples include impact-driven shock waves to synthesize novel materials 1 mm and 1 μm thin shocked to pressures up to 100 GPa (1 Mbar), preferential crystallographic alignment achieved by taking account the shape and size of powder particles, and high-pressure phase transitions quenched in geological materials. Thin speciments are used to performed by the highest quench rates. Methods are described which show that the experiments can be performed by precooling or preheating specimens in the range -170° to +1000° C. Calculational results for the quartz experiments show the importance of computational simulations to determine the pressure history in the specimen.  相似文献   

18.
本文采用扭辫分析技术研究了不同表面状态的芳纤/环氧复合材料的固化过程。根据一系列等温固化谱图和热机谱图,得到时间-温度-转变(T、T、T)状态图,此图可以用来指导复合材料的复合工艺制订。依照固化温度,得到三类固化行为:(Ⅰ)T固化gg时,仅有玻璃化作用,(Ⅱ)Tgg固化g∞,则有凝胶作用和玻璃化作用,(Ⅲ)Tg∞固化时,仅有凝胶化作用。文中还测定了不同固化反应体系的化学反应级数、反应速率、活化能等化学动力学参数,并讨论了不同芳纤表面状态对复合材料固化反应动力学参数的影响和对复合材料成品热机性能的影响。  相似文献   

19.
Mono-molecular films of arachidic acid were deposited on glass slides using the Langmuir–Blodgett (LB) technique. The liquid subphases were dilute solutions of ZnSO4 at different pH. Glass slides were treated to create contact angles (θ) ranging from approximately 15° for clean glass slides, to contact angles greater than 120° for slides treated with ferric stearate. Intermediate contact angles were created by immersing slides in solutions of Sigmacote® of varying concentration. Very small contact angles, θ≈0° were obtained with clean glass slides at high pH values. LB deposition data and transfer ratios (TR) were recorded for up-stroke and down-stroke operation. During upstroke, TR increase with decreasing contact angles reaching a maximum TR close to 100% when the receding contact angle is approximately 15–20°. This is typical of the split-ejection flow pattern found during up-stroke. For very small contact angles, i.e. less than 10°, TR suddenly become zero indicating a transition to a dip-coating flow pattern. During down-stroke operation, TR is zero or negative for small contact angles, reaching a maximum TR approximately 100% for contact angles larger than 120°.  相似文献   

20.
Abstract

The surface and through thickness residual stress magnitudes present in heat treated high strength aluminium alloy components are frequently reported to exceed the uniaxial yield stress of small specimens of the same alloy measured immediately after quenching. In thick section plate and forgings, it is proposed that these high residual stress magnitudes are a consequence of hardening precipitation that occurs during quenching which allows a greater elastic stress to be supported. To investigate this theory, a Jominy end quench technique is used to determine the hardness of aluminium alloys 7010, 7175 and 5083 as a function of distance from the quenched end. Cooling curves have been measured for Jominy end quench specimens using deeply buried thermocouples and are compared with finite element model predictions. Tensile properties are also determined for small specimens quenched into cold and boiling water. Vickers hardness and X-ray diffraction residual stress measurements are undertaken on specimens of varying size acting as a comparison with the Jominy results. These results in combination with optical and electron microscopy data do suggest that low temperature rather than high temperature precipitation during the quench leads to increased as quenched mechanical strengths, with the consequence that less quench sensitive alloys will support higher residual stress magnitudes as section thicknesses increase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号