首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
通过纳米轻质碳酸钙(NPCC)或热塑性聚氨酯(TPU)增韧聚乳酸(PLA),利用双螺杆挤出机进行不同组分比的聚乳酸基复合材料熔融共混,再利用注塑成型制备一系列PLA/TPU、PLA/NPCC和PLA/TPU/NPCC共混物。采用悬臂梁冲击试验机与万能实验机进行了力学性能测试,发现NPCC和TPU起到了较好的协同增韧效果;采用扫描电子显微镜、差示扫描量热仪、广角X射线衍射仪和偏光显微镜分别进行了复合材料的微观形态、结晶性能、结晶形态及结晶形貌测试,结果表明,NPCC较均匀地分散在PLA基体中,TPU以短纤状存在于PLA基体中,NPCC或TPU的加入都降低了PLA的玻璃化转变温度和结晶度。  相似文献   

2.
采用熔融共混法制备了聚乳酸/人造岗石废渣(PLA/AMWs)复合材料,研究了AMWs含量对PLA/AMWs复合材料结晶速率、热变形温度和力学特性等的影响。结果表明,AMWs能够显著提升PLA的结晶速率和力学性能,加入约40%AMWs的PLA/AMWs复合材料,半结晶时间缩短了61%(10℃/min降温)。另外,加入约20%AMWs时,弯曲强度和冲击强度较纯PLA分别增长285%和146%。本文研究实现增值化应用AMWs,降低PLA应用成本和改善PLA韧性较低的缺陷,助力可生物降解塑料的应用。  相似文献   

3.
以四水硝酸钙与磷酸氢二铵为原料,采用共沉淀法制备了壳聚糖-羟基磷灰石(CS-HA)复合微球,并通过熔融共混法将其与聚乳酸(PLA)复合制得PLA/CS-HA复合材料,同时分析了CS-HA复合微球的结构以及PLA/CS-HA复合材料的性能。结果表明:CS已成功与HA复合,制得具有自组装微球结构的CS-HA复合物。当CS-HA复合微球添加量为5%时,PLA/CS-HA复合材料的弯曲强度较纯PLA提高了15.1%,较同填充量的PLA/HA复合材料提高了13.5%,而拉伸强度和冲击强度较纯PLA略有降低。此外,当CS-HA复合微球添加量为5%时,PLA/CS-HA复合材料的5%质量损失温度和失重速率峰值温度较纯PLA分别提高了33.1和22.2℃,说明CS-HA复合微球的加入提高了PLA的热稳定性;当CS-HA复合微球添加量为15%时,PLA/CS-HA复合材料的结晶度达到31.72%,较纯PLA提高了23.23%,这说明CS-HA复合微球可促进PLA的结晶。  相似文献   

4.
通过熔融共混制得聚丙烯/聚乳酸/纳米碳酸钙(PP/PLA/CaCO3)复合材料,考察了PLA和纳米CaCO3对复合材料力学性能、热性能、流变性能与结晶形态的影响及其作用机理。结果表明,复合材料中形成连续空间网络结构的PLA有助于改善PP的性能,PLA含量为20 %(质量分数,下同)时复合材料综合力学性能最佳;与纯PP相比,加入PLA后的复合材料拉伸强度和冲击强度分别提高5.1 %和54.4 %,断裂伸长率降低62.5 %;纳米CaCO3通过“滚珠增韧”和“异相成核”作用明显改善复合材料力学性能,纳米CaCO3含量15 %时产生的晶粒细化作用效果最为显著,复合材料综合力学性能达到最佳,拉伸强度、断裂伸长率和冲击强度分别比未添加CaCO3时提升了15.2 %、2.7 %和5.6 %。  相似文献   

5.
张涛  曹明  苗继斌  杨斌  黎欣  钱家盛  夏茹 《应用化工》2022,(9):2608-2612
通过熔融共混法制备聚丙烯/聚乳酸(PP/PLA)复合材料,研究成核剂癸二酸二苯基二酰肼(TMC-300)和增容剂聚丙烯接枝马来酸酐(PP-g-MAH)对PP/PLA复合材料的结晶行为、热学性能、力学性能的影响。结果表明,TMC-300能够显著提高PP/PLA共混物的结晶速率和结晶度,降低球晶尺寸,并改善复合材料的力学性能。当TMC-300添加量为0.5%时,共混物的熔点从163.9℃提高到168.6℃,结晶度达到44.2%,比纯PP/PLA提高25.6%,拉伸强度和冲击强度分别增加了13.33%,49.86%。当增容剂与成核剂并用时,增容剂可改善PLA链段运动能力,并提供更多的成核位点,进一步促进PLA的结晶性能,且结晶的分布由海岛式结构变为双连续相结构,复合材料的拉伸强度比纯PP/PLA提升了19.25%。  相似文献   

6.
以低分子量聚乙二醇(PEG)为增塑剂,马来酸酐改性的甘蔗纤维(MSF)为成核剂,采用熔融共混的方式制备PLA/MSF/PEG复合材料,并对复合材料的结晶行为、晶体形貌、力学和表面亲水性进行研究。结果表明:表面改性的MSF可作为异相成核剂,显著提高PLA的结晶能力;增塑剂PEG和成核剂MSF的协同加入,能够进一步提高PLA的结晶速率,并增大球晶尺寸。增塑剂PEG的加入,能够明显提高PLA/MSF/PEG的断裂伸长率,但使复合材料的拉伸强度和模量下降。与PLA/PEG共混物相比,PLA/MSF/PEG共混物具有更高的拉伸强度和模量。PLA/MSF(3%)/PEG(10%)的综合性能较好,与纯PLA相比断裂伸长率提高468.7%,拉伸强度降低48.7%左右。因此,增塑剂PEG与改性纤维MSF协同改性,使PLA/MSF/PEG共混物具有更优异的力学性能和结晶性能,能够进一步扩大PLA材料的应用范围。  相似文献   

7.
以聚乳酸(PLA)、热塑性聚氨酯(TPU)和聚氨酯预聚体(PUP)为原料,通过原位反应制备了一系列聚乳酸/热塑性聚氨酯(PLA/TPU)复合材料,并详细分析了PUP对PLA/TPU复合材料的反应原理、力学性能、断面形貌及结晶性能的影响。结果表明:随着PUP的加入,复合材料的拉伸样条出现明显的屈服和缩颈现象,当PUP含量为15%时,试样的断裂伸长率提升了382%,冲击强度是未加PUP试样的2. 1倍,拉伸强度轻微下降,另外,FTIR和SEM分析结果表明,PUP中NCO基团与PLA中末端羟基或羧基的反应显著改善了PLA和TPU共混物的相容性。结晶测试表明,PLA/TPU复合材料比纯PLA的结晶速率和晶体的完善程度都高。  相似文献   

8.
采用熔融共混法制备聚乳酸/蒙脱土(PLA/MMT)纳米复合材料。用X射线衍射仪、透射电子显微镜、差示扫描量热仪对材料的力学性能、微观结构和形貌进行表征。结果表明,PLA分子链插入MMT片层间,MMT层间距由1.801 nm增大到3.530 nm并呈纳米级均匀分散在PLA基体中,体系相容性良好;MMT的加入量为3 %(质量分数,下同)时,复合材料的力学性能得到最大改善,拉伸强度由纯PLA的53.1 MPa提高到62.8 MPa,冲击强度由纯PLA的18.00 kJ/m2提高到23.30kJ/m2,加入3 % MMT的复合材料结晶度为42.63 %,试样平均晶粒粒径尺寸为0.285 nm,而纯PLA的结晶度是24.52 %,平均晶粒粒径尺寸0.305 nm,MMT的加入明显提高了PLA的力学性能和结晶度。  相似文献   

9.
用熔融共混挤出法制备了不同配比的聚乳酸(PLA)/聚乙醇酸(PGA)共混合金,并分别加入环氧型扩链剂ADR 4370F进行对比分析,通过拉伸性能测试、弯曲性能测试、缺口冲击强度测试、扫描电子显微镜(SEM)和差示扫描量热(DSC)仪研究了共混合金力学性能、相容性和结晶性能。结果表明:与纯PLA和纯PGA相比,PLA/PGA共混合金的相容性差,导致力学性能降低,纯PLA、纯PGA和70%PLA/30%PGA合金的拉伸强度、弯曲强度、断裂伸长率和缺口冲击强度分别为58.6 MPa,123.5 MPa,8.52%,9.0 J/m;91.9 MPa,157.6 MPa,7.9%,5.2 J/m;41.2 MPa,91.2 MPa,3.8%,2.0 J/m。PLA和PGA可以互相加快结晶速度,加入环氧型扩链剂可以改善合金的相容性,上述四个力学性能可相应提高到49.2 MPa,96.0 MPa,4.5%,4.3 J/m,而且降低了PLA和PGA的结晶度。另外,向PLA中加入1%PGA时,PGA可以充当PLA的成核剂,使PLA的冷结晶温度降低10℃左右,结晶度提高1.3%。  相似文献   

10.
通过熔融共混法制备了一系列不同质量比的PLA/PBS复合材料,研究了不同比例的PBS对PLA的增韧效果,结果发现:加入PBS后,PLA的断裂伸长率和冲击强度都有了明显的提高。PLA与PBS的最佳配比为80/20,断裂伸长率高达428. 04%,冲击强度也由纯PLA的1. 74 k J/m2上升至3. 57 k J/m2。固定PLA/PBS的质量比为80/20,加入不同质量分数的相容剂苯乙烯-甲基丙烯酸缩水甘油酯(ADR)研究ADR对PLA/PBS复合材料增容改性的影响,结果显示:ADR的加入提高了PLA/PBS复合材料的相容性,从而使PLA/PBS复合材料的力学性能也进一步提高。当ADR含量为0. 75%时,其断裂伸长率最大,数值为535. 18%。同时,PLA/PBS复合材料的热稳定性能也更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号