首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
生产的国标牌号Y1Cr13高硫易切削不锈钢,工艺路线为:20 t EAF-AOD-LF-模铸.通过设计合理的精炼渣系,使精炼渣碱度控制在R=1.4~1.7,稳定了喂硫收得率,成品硫含量ω(S)0.22!~0.26!,喂硫收得率维持在75!以上.为防止后续加工过程中出现皮下发纹的质量缺陷,精炼后期进行夹杂物变形处理,采用氩气保护低温浇注,浇注过热度控制在45~55℃,保证了整个检验塔型上发纹数小于3条,满足了用户的使用要求.  相似文献   

2.
 铁水预处理过程中所产生的脱硫渣铁中铁和硫较高,具有较高的再利用价值,目前国内各大钢铁企业都致力于脱硫渣铁回收再利用的研究。介绍了迁钢公司二炼钢转炉回收利用脱硫渣铁工艺,并对生产数据进行了总结,加入8 t脱硫渣后平均增硫为0.013 6%,转炉出钢硫质量分数高,LF精炼需要深脱硫处理,精炼工艺造渣料电耗都有所增加,生产周期延长。从整体分析,转炉回收利用脱硫渣铁能够提高金属铁收得率,降低炼钢成本,提高经济效益。  相似文献   

3.
为减少出钢过程下渣、提高钢水质量及合金元素收得率,马鞍山钢铁股份有限公司第四钢轧总厂对300 t转炉原气动挡渣工艺进行了优化,采用了挡渣镖法和气动挡渣法相配合的方法。现挡渣镖法挡渣成功率达到98%,出钢下渣量减少了30%以上,平均回磷质量分数可控制在0.003%以下,同时提高了钢水收得率,改善了溅渣护炉和后续精炼效果,取得了较好的经济效益。  相似文献   

4.
超低硫钢冶炼过程钢包渣改质剂的作用   总被引:4,自引:0,他引:4  
在超低硫钢冶炼过程中对转炉出钢下渣进行了改质处理试验。使用钢包渣改质处理工艺 ,不仅可以降低钢包顶渣氧化性、提高顶渣碱度、优化顶渣脱硫条件 ,为LF炉生产超低硫钢创造了有利条件 ,实现精炼前移功能 ,使成品钢中最低硫质量分数达到 1 0×1 0 - 6 ,而且缩短冶炼时间、提高合金收得率和钢水纯净度  相似文献   

5.
通过严格转炉冶炼工艺操作及使用物料合金化改进,精炼过程中选择低碱度酸性渣和低Al2O3精炼渣系,连铸全程保护浇注、结晶器液面自动控制及使用首末端电搅,使钢材夹杂物、氧含量及力学性能完全满足用户对硬线钢的质量要求  相似文献   

6.
为了提高钢水质量,减少出钢过程下渣量、提高合金元素收得率,唐钢公司第二钢轧厂对转炉挡渣工艺进行了优化,改进了挡渣球结构、出钢口形状、挡渣球的加入方式。优化后,挡渣成功率提高约10%;出钢下渣量减少了30%以上;平均回磷量可控制在0.008%以内;硅锰合金吸收率提高了约7%,碳化硅收得率提高约15%,取得了很好的经济效益,且有利于提高精炼效果。  相似文献   

7.
通过研究40tLF精炼渣的碱度和脱氧工艺对42CrMoS4V钢中硫质量分数的控制、氧化物含量和钢中硫化物的影响。结果表明,LF精炼渣碱度控制在3.0~3.5喂硫线,VD后硫的回收率达70%~90%;钢中硫化物、氧化物级别≤2.0级;精炼结束喂适量Ca-Si线可改善钢中硫化物的形貌。  相似文献   

8.
提高炉渣中MnO向钢中传递的试验   总被引:1,自引:0,他引:1  
戴诗凡  吴伟  马登  张曦东  王鹏 《钢铁》2017,52(8):35-42
 为了提高锰矿直接合金化锰的收得率,根据热力学分析结果确定了降低渣钢间锰分配比的影响因素。分析结果表明,提高温度和碳的活度是降低渣钢间锰分配比的必要条件。由此设计了感应炉试验方案,并进行了试验研究。结果表明,精炼渣在配加还原剂的情况下锰矿直接合金化锰平均收得率为90.8%,碳化硅作为还原剂在配碳量为1.2~1.4时,锰分配比最低;高温、高碳质量分数可以有效降低渣钢间锰分配比,底吹强度、锰矿加入量等工艺参数对锰矿直接合金化的效果有影响,应控制工艺避免锰矿石和还原剂的加入对钢中磷、硫产生的不利影响。  相似文献   

9.
挡渣技术在冶炼低硫、低磷钢,提高钢质量和合金回收率,以及开展炉外精炼等方面是必不可少的。当前挡渣球作为挡二次渣的方法已广泛应用,国内鞍钢三炼钢、攀钢、太钢、上钢一厂、上钢三厂、首钢、邯钢均在试验。试验表明,挡渣对于减少出钢后的回硫、回磷延长出钢口和钢包寿命,提高合金收得率,效果明显。  相似文献   

10.
段建平 《特殊钢》2015,36(5):21-23
为降低AOD精炼的渣料和还原剂硅铁用量,对高铬钢液脱碳及还原过程渣碱度控制进行热力学分析,并进行45 t AOD冶炼304不锈钢造渣工艺试验。试生产结果表明,降低AOD精炼304不锈钢脱碳期炉渣碱度可减少钢水铬的氧化,同时有效减少AOD精炼渣料和还原剂消耗;AOD精炼过程石灰加入量平均从104.2 kg/t降至84.2~93.1 kg/t时,脱碳期炉渣碱度由平均13.44降低到10.64,AOD冶炼过程石灰、萤石、硅铁单耗分别平均降低14.7、5.4、4.4 kg/t,钢中Cr收得率、Ni收得率和硫含量分别为99.0%、98.3%和0.0025%。  相似文献   

11.
赵鑫  李峰  赵明泉 《包钢科技》2012,38(4):36-38,56
文章针对1Cr5Mo钢种合金含量高及有害元素要求低的特点,在转炉炼钢、炉外精炼、连铸生产过程中采取相应的工艺措施,包括:控制转炉入炉铁水中w[S]≤0.03%、提高转炉出钢温度至1 670℃左右、控制转炉下渣量、延长LF炉精炼时间以及连铸低拉速浇注等,生产出质量合格的连铸坯。硫印及热酸检验结果表明:铸坯内部质量良好,由铸坯轧制成的无缝钢管力学性能也满足石油裂化管标准要求。  相似文献   

12.
Desulfurization performance with low binary basicity refining slag in 72 grade tire cord steel was calculated using FactSage and it is found that sulfur content in steel decreases with the increase of basicity of slag, MgO content in slag and slag/steel ratio while sulfur partition ratio between slag and steel increases gradually with the increase of basicity of slag as well as MgO content. Experiments were carried out and the results are of great agreements with theoretical calculation. Then industrial application tests were performed in a domestic plant and good results were achieved. Sulfur content in steel decreases gradually during refining process, as a result, sulfur content in the billets is controlled in the range of 0.007 1%-0.008 1%. Sulfur content in steel refined with slag basicity of 1.21 is lower than that of 1.02, while the plasticity of oxide compound inclusions is a little better controlled in low basicity heats. Using refining slag with basicity of 1.0-1.2 and MgO content of 5%-10% and reducing the slag takeover of LD are favorable for improving the desulfurization performance and the plasticity of inclusions during the industrial production.  相似文献   

13.
莱钢特钢厂采用50tUHP(EBT)-50tLF精炼工艺生产轴承钢,质量指标符合YB9-68标准,一次检验合格率100%,钢中氧含量小于2.0×10-3%,点状夹杂物出现率为0。结果分析证明,低碱度精炼渣可有效消除钢中点状夹杂物;碱度控制在2.0~2.5、渣量2%、钢中酸溶铝含量0.028%~0.040%、吹氩量6000~8500L/炉为最佳工艺参数。  相似文献   

14.
本钢北营炼钢厂在开发高钛含量焊丝钢时,经常出现浸入水口结瘤、铸坯卷渣、钛收得率低等问题,特别是铸坯卷渣严重影响轧后盘条表面质量。分析认为,高熔点的Ti N、Ti O2及Al2O3非金属夹杂物是导致浸入水口结瘤的主要原因。通过控制钢中氮含量、强化精炼渣中脱氧、优化浇注过程工艺等有效手段,提高了高钛含量焊丝钢连浇炉数、盘条成材率等质量指标,优化效果显著。  相似文献   

15.
针对含铝钢初炼钢水[C]低、[O]高的特点,提出采用CaO-Al2O3-CaF2系精炼渣,组分中CaO/Al2O3=1.7~1.9;出钢过程采用渣洗工艺向钢包加入大部分精炼渣,将连铸返回的热态精炼渣倒入精炼钢包中,缩短精炼成渣时间,保证足够的白渣和软吹时间。冶炼20Mn2A时,脱S率达到77.13%,铸坯T[O]为21×10^-6,铸坯中[Als]为0.026%,达到了良好的冶金效果。  相似文献   

16.
根据钢厂100 t BOF-吹氩-LF-RH-Ca处理流程生产优质深冲(DDQ)级深冲热轧带钢SPHE(%:≤0.07C、≤0.03Si、0.20~0.30Mn、≤0.020P、≤0.010S、0.02~0.06Als)时Ca处理过程S含量过高的情况,通过KTH硫容量模型,分析了CaO/SiO2、Al2O3和MgO对精炼渣硫分配比LS的影响,建立了CaO-MgO-SiO2-Al2O3四元渣系脱硫模型,优化LF脱硫的精炼渣成分。结果表明,使用优化后的精炼渣(%:50CaO、6MgO、≤5SiO2、30~35Al2O3),LF精炼钢水的脱硫率≥80%。模型预测值与实测值误差为±5%的占80%。  相似文献   

17.
 根据沙钢对管线钢的生产需求及制造成本的控制,结合LF钢包精炼深脱硫的相关理论,开发了适用于管线钢的深脱硫精炼渣和低成本深脱硫工艺。使用该工艺,可完全不使用CaF2,只需使用石灰、铝脱氧产物和转炉下渣即可完成造渣,减少了石灰的消耗,降低了生产成本。180t LF生产实践表明:该工艺可将管线钢的硫含量稳定控制在10×10-6以下,精炼平均脱硫率高于85%。同时,该精炼渣具有较强的夹杂物吸附能力,精炼终点的非酸溶铝含量为(20~100)×10-6。  相似文献   

18.
通过现场取样分析和热力学计算,评价了工业化生产GCr15轴承钢LF精炼工序的脱硫能力.分析了精炼温度、钢中酸溶铝含量、精炼渣的光学碱度对LF精炼过程硫分配比的影响.由于实际精炼过程中脱硫反应未达到平衡,实际测得的硫分配比低于理论计算值.得到了精炼温度为1 830~1 855 K,钢中酸溶铝的质量分数为0.020%~o.050%,精炼渣光学碱度在0.760~0.795范围内,精炼温度、钢中酸溶铝、渣的光学碱度及渣中Al2O3、SiO2含量对硫分配比影响的回归方程,该方程可作为实际生产条件下LF精炼工序脱硫能力的评价依据.根据回归方程,设计了改变精炼渣组成的3因素4水平正交实验,分析了精炼渣二元碱度R2及Al2O3和SiO2含量对硫分配比的影响,得出渣-钢间最优硫分配比的精炼渣组成(质量分数)为:CaO 55.11%,Al2O3 30%,SiO26.89%,MgO 8%,光学碱度为0.777.  相似文献   

19.
主要介绍了采用“顶底复吹转炉-LF精炼一塞棒包浇注”工艺生产低合金Q345B冷轧用带钢。通过研究转炉项底复吹模式,改进LF精炼铝脱氧、钙处理工艺,选择合理的CaO—A120,-SiO2目标渣系,优化连铸保护浇注工艺,将Q345B钢种磷、硫分别控制在0.025%、0.010%以下,铸坯全氧稳定在40ppmvAT,提高了钢水洁净度,降低了夹杂物级别,满足了用户质量要求。  相似文献   

20.
张强  袁宏伟  杨森祥  李清春  陈靓 《钢铁》2013,48(11):32-36
 攀钢提钒炼钢厂采用w([S])为0.06%~0.12%的铁水炼钢,导致低硫钢的生产困难较大,结合攀钢X52NS,L245NCS等低硫钢冶炼的生产实践,分析了“铁水脱硫预处理—转炉—LF钢包精炼—连铸”全流程各工艺环节的硫含量控制技术。通过铁水脱硫预处理后将w([S])控制在0.003%以下,转炉冶炼工位采用含硫较低的辅料造渣以及LF工位控制钢水[O]活度等措施,生产出了w([S])最低为0.002%的低硫钢。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号