首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polyvinyl alcohol/chitosan/silver (PVA/CS/Ag) nanocomposite membranes were synthesized by γ-radiation with promising antimicrobial and biomedical applications. The nanocomposite membranes were prepared by mixing PVA and CS solutions with different copolymer compositions in the presence of silver nitrate (AgNO3) and glutaraldehyde as cross-linker, followed by in situ reduction with γ-radiation at different doses. The nanocomposite membranes were characterized by ultraviolet spectroscopy (UV), Fourier transform infrared, X-ray diffraction (XRD) and transmission electron microscopy (TEM). UV studies showed a strong peak around λ max at 430 nm due to surface plasmon resonance of silver nanoparticles formed during irradiation. As the irradiation dose increased from 25 to 75 kGy, the plasmon band is shifted from 430 to 418 nm with high intensity, indicating the formation of smaller particles. TEM investigation showed uniform distribution of silver nanoparticles (AgNPs) in the membranes with mean diameter of 32–19 nm. XRD results confirmed that the mean diameter of AgNPs estimated from the Debye–Scherrer formula was in the range of 27.5–12.8 nm which confirms the TEM results. The PVA/CS/Ag nanocomposite membranes exhibited good antibacterial activity and were found to cause significant reduction in microbial growth. The nanocomposite membranes showed non-thrombogenicity effect and slightly haemolytic potential, suggesting their promising use in biomedical applications.  相似文献   

2.
Silver nanoparticles were deposited on the surface of an extruded film of linear low density polyethylene/cyclo olefin copolymer (LLDPE/COC) blend by an ultrasound-assisted method. A series of LLDPE/COC/silver nanocomposites, containing 0.02, 0.05, 0.08 and 0.1 mol/L of AgNO3 were prepared and characterized. The effect of ultrasound method on the silver deposition on the film surface was characterized as well as the effect of silver nanoparticles on their fungicidal characteristics. The silver action and biocide effect of the films were enhanced significantly as the silver content increased from 0.02 to 0.08 mol/L of AgNO3 and after that no significant enhancement was observed. From the UV–Vis analysis and transmission electron microscopic observations, the particle shape, size and size distribution were determined. Films of LLDPE/COC blends with silver deposition exhibited a noticeable increase in water vapor barrier properties with the increase in the concentration of AgNO3 and demonstrated good fungicidal activity, specifically against fungus Aspergillius niger. The observed results could be applied in the design of industrial films for packaging.  相似文献   

3.
In this paper, poly(vinyl alcohol)/silver nitrate (PVA/AgNO3) films were annealed at 180 °C for 1 h to prepare highly electrically conductive poly(vinyl alcohol)/silver (PVA/Ag) nanohybrids. Ultraviolet (UV)-visible absorption spectra, X-ray diffraction (XRD) scans, and scanning electronic microscopy (SEM) were applied to investigate the structures and morphology of the PVA hybrids. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were employed to study the thermal property of PVA/AgNO3 films. Furthermore, perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy combined with temperature-dependent Fourier transform infrared (FTIR) spectroscopy was used to investigate the conversion of AgNO3 into Ag nanoparticles in PVA matrix. The results show that the chelates for AgNO3 coordinated with hydroxyl groups are primarily decomposed in the temperature regions of 39.7–72.6 °C and 182.7–199.6 °C. AgNO3 is reduced into Ag0 and the hydroxyl groups of PVA are oxidized into carbonyl groups. The PVA-AgNO3 chelates are very rapidly decomposed in the temperature region of 182.7–199.6 °C. Large amounts of Ag0 produced by the reduction of AgNO3 are aggregated into Ag nanoparticles which are homogeneously dispersed into the PVA matrix. When the temperature increases to 212.7 °C, the unhydrolyzed acetate groups in PVA chains are sharply decomposed.  相似文献   

4.
Electrospun nanofibrous membranes (ENMs) were fabricated based on chitosan/poly(vinyl alcohol) (CS/PVA) with a 70/30 mass ratio containing silver nanoparticles (AgNPs) via the electrospinning method. AgNPs were produced on the surface of CS/PVA nanofibers by adding AgNO3 to a CS/PVA blend solution as a silver rendering component. The presence of AgNPs in the polymer blend solution was detected by UV spectrophotometry. The morphology of nanofibers before and after cross-linking with glutaraldehyde was investigated by the field emission scanning electron microscopy. The formation and size distribution of AgNPs onto the surface of nanofibers were observed by transmission electron microscopy and confirmed by energy dispersing X-ray spectroscopy. As-spun and cross-linked CS/PVA nanofibers revealed a smooth surface with diameters ranging from 58 to 73 nm and 95 to 109 nm, respectively. The effect of AgNP formation on the chemical structure of nanofibers was explored by Fourier transform infrared spectroscopy. Static and dynamic antibacterial filtration efficiencies of CS/PVA ENMs, containing differing amounts of AgNO3, have been tested against Escherichia coli, a gram negative bacterium. The antibacterial assessment results exhibited a significant increase in both static and dynamic antibacterial filtration efficiencies of the prepared CS/PVA ENMs by addition of AgNO3 as a bactericidal agent.  相似文献   

5.
Polyvinyl alcohol (PVA)/regenerated silk fibroin (SF)/AgNO3 composite nanofibers were prepared by electrospinning. A large number of nanoparticles containing silver were generated in situ and well‐dispersed nanoparticles were confirmed by transmission electron microscopy (TEM) intuitionally. Ultraviolet (UV)‐visible spectroscopy and X‐ray diffraction (XRD) patterns indicated that nanoparticles containing Ag were present both in blend solution and in composite nanofibers after heat treatment and after subsequent UV irradiation. By annealing the nanofibers, Ag+ therein was reduced so as to produce nanoparticles containing silver. By combining heat treatment with UV irradiation, Ag+ was transformed into Ag clusters and further oxidized into Ag3O4 and Ag2O2. Especially size of the nanoparticles increased with heat treatment and subsequent UV irradiation. This indicated that the nanoparticles containing silver could be regulated by heat treatment and UV irradiation. The antimicrobial activity of heat‐treated composite nanofibers was evaluated by Halo test method and the resultant nanofibers showed very strong antimicrobial activity. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
In this study, 2,6-pyridinedimethanol was used as a chain extender to synthesize a new polyurethane, PDM-PU. Further, various amounts of silver nitrate were incorporated to produce PDM-PU/AgNO3 complexes. FT-IR and UV–Vis analyses confirm the formation of complex in the PDM-PU/AgNO3. DSC and DMA results show that the glass transition temperature (T g), dynamic T g and storage modulus at 25 °C of the PDM-PU/AgNO3 complexes increase with increasing AgNO3 content. This is due to the formation of complex structure that can restrict the segmental motion of polymer chains. The TGA and stress–strain test results show that the thermal decomposition temperature, tensile strength and elongation at break increase with the AgNO3 content initially. Then, they decrease inversely. This indicates that the formation of complex structure raises these properties when the AgNO3 content is below certain value. But as more coordinate bonds were formed, the specimens become brittle. In addition, the crosslink effect caused by coordinate bonds inhibits the dissolution of polymer chains and thereby reduces the swelling degree of the complexes in solvent. Furthermore, AgNO3 imparts antibacterial activity against S. aureus and K. pneumoniae to the complexes  相似文献   

7.
Hydrosols containing silver nanoparticles were prepared from copolymers of ethylene glycol (EG) and vinyl pyrrolidone (VPy). The copolymers were synthesized using a macro-azo-radical initiator appended with EG units. The hydrosols were prepared by simply stirring the copolymers with AgNO3 in water at room temperature. The nanoparticles conferred thermal stability to the hydrosols, up to 80 °C. Spectroscopic, thermal, and gas chromatography analyses revealed that the silver nanoparticles were protected by EG and carbonyl groups with strong interaction between silver and the oxygen species of EG and VPy.  相似文献   

8.
A novel wound dressing material was prepared by electrospinning poly(vinyl alcohol) (PVA)/AgNO3 aqueous solution into nonwoven webs and then treating the webs by heat or UV radiation. Through SEM, TEM, and XPS analyses, it was observed that the silver (Ag) nanoparticles were generated and existed in the near surface of the electrospun nanofibers. It was found that heat treatment as well as UV radiation reduced the Ag+++ ions in the electrospun PVA/AgNO3 fiber web into the Ag nanoparticles. Also the heat treatment improved the crystallinity of the electrospun PVA fiber web and so it made the web unsolved in moisture environment. Therefore, it was concluded that the only heat treated electrospun PVA/AgNO3 fiber web was a good material as wound dressings because it had structural stability in moisture environment as well as excellent antimicrobial ability and, quick and continuous release of the effectiveness. POLYM. ENG. SCI., 47:43–49, 2007. © 2006 Society of Plastics Engineers  相似文献   

9.
《分离科学与技术》2012,47(13):2128-2137
Silver-doped methyl-modified silica membranes (Ag/M-SiO2) have been prepared using the sol-gel method by adding AgNO3 solution to a methyl-modified silica sol. The influence of silver-doping on the physical and chemical structures, thermal stability of –CH3 groups, and gas permeation performance for the silica membranes were investigated. The metallic silver results from the reduction of AgNO3 which can be completely transformed after calcined above 200°C. The Si–CH3 vibrational bands disappear completely when the calcination temperature is increased to 600°C, which mineralized when the calcination temperature is further increased to 750°C. The doping of silver nanoparticles has nearly no influence on the chemical structure of the methyl-modified silica materials and the thermal stability of –CH3 groups, but can make the mean pore size, total pore volume, H2 permeability, and H2/CO2 selectivities of the silica membranes increase. When operated at 200°C and a pressure difference of 0.35 MPa, the H2 permeance and H2/CO2 selectivity of Ag/M-SiO2 membrane with the AgNO3/tetraethylorthosilicate molar ratio of 0.08 is 8.99 × 10?6 mol · m?2 · Pa?1 · s?1 and 10.22, respectively. After hydrothermal treatment and regeneration, the Ag/M-SiO2 membranes show a smaller change in gas permeances and H2/CO2 permselectivities than the methyl-modified silica membranes without silver-doping.  相似文献   

10.
《Polymer Composites》2017,38(12):2687-2694
Silver nanostructured particles with controlled size, shape, and morphology were achieved by gamma irradiation of aqueous solution containing AgNO3, ploy (vinyl pyrrolidone), (PVP) or mixture of PVP and ploy (vinyl alcohol), (PVA). The reaction condition parameters such as solvent content, polymer type and irradiation dose were investigated. The physico‐chemical properties and morphological structures of the as‐prepared sliver nanostructures were characterized using UV/VIS spectroscopy, TEM, XRD, and Fourier transform infrared spectroscopy (FTIR) spectroscopy. Hexagonal and nanorods structures of sliver nanoparticles having single surface plasmon resonance peak and triangular (nanoprism) nanoparticles having different surface plasmon resonance peak were obtained. The XRD patterns of the as‐prepared silver nanostructure show four diffraction peaks at 2θ of 38.4°, 44.5°, 64.6°, and 77.6° of the face‐centered cubic structure silver nanoparticles. FTIR measurements indicated that the sliver nanoparticles were coordinated through the functional groups of PVA and/or PVP. POLYM. COMPOS., 38:2687–2694, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
BACKGROUND: The objectives of this study were optimization of silver nanoparticle synthesis using biotransformations by Lactobacillus casei subsp. casei, and studying the location of nanoparticles synthesis in this microorganism. RESULTS: The presence of AgNO3 (0.1 mmol L?1) in the culture as the enzyme inducer, and glucose (56 mmol L?1) as the electron donor in the reaction mixture had positive effects on nanoparticle production. By gradually increasing the concentration of AgNO3 (as the substrate) to 6 mmol L?1, nanoparticle production was increased. By increasing biomass, nanoparticles production was also increased. Biosynthesized silver nanoparticles were almost spherical, single (25–50 nm) or in aggregates (100 nm), attached to the surface of biomass or were inside and outside of the cells. CONCLUSION: The present study demonstrated the bioreductive synthesis of silver nanoparticles using L. casei subsp. casei at room temperature. In this research, and due to experience in optimization of biotransformation reactions, the reaction conditions were successfully optimized to increase the yield of nanoparticles production and productivity of this biosynthetic approach. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
This work analyses the effect of using ethylene-propylene-diene-monomer-grafted maleic anhydride (EPDM-g-MA) as compatibilizer to improve the interfacial properties and toughness of high-density polyethylene–organoclay–silver (HDPE/clay/silver) nanocomposites. EPDM-g-MA was reacted using ultrasound with a solution of AgNO3 0.04 M and ethylene glycol using ammonium hydroxide to obtain the silver ammonium complex. This silver-coated maleated EPDM was then melt mixed with HDPE and organoclay (Nanomer I28E) using a twin-screw extruder. Transmission electron microscopy (STEM) and X-ray diffraction (XRD) results confirmed the filler dispersion of both organoclay and silver nanoparticles into HDPE matrix when maleated EPDM was used. Both fillers were better dispersed and exfoliated by using this compatibilizer. The thermal stability enhancement of nanocomposites was confirmed using thermogravimetric analysis. Mechanical and antimicrobial properties demonstrated that better dispersed filler obtained with maleated EPDM enhanced the toughness and antimicrobial behaviour of HDPE/clay/silver hybrid nanocomposites. This confirmed that maleated EPDM was an efficient compatibilizer to obtain hybrid nanocomposites with enhanced properties to be used for several HDPE applications.  相似文献   

13.
Dendrimers have been used as a vehicle to develop the antimicrobial properties of textile fabrics. We have taken advantage of the large number of functional groups present in the regular and highly branched three‐dimensional architecture of dendrimers. In this study, the poly(amidoamine) (PAMAM) G‐3 dendrimer was modified to provide antimicrobial properties. Following a procedure similar to what is suggested in the literature, PAMAM (G3) with primary amine end groups was converted into ammonium functionalities. The modification was then confirmed by FTIR and 13C‐NMR analysis. Dendrimers have unique properties owing to their globular shape and tunable cavities, this allows them to form complexes with a variety of ions and compounds; and also act as a template to fabricate metal nanoparticles. AgNO3–PAMAM (G3) complex as well as a MesoSilver–PAMAM (G3) complex were formed and these modified dendrimers were characterized by a UV–Visible spectrophotometer to study the complex formation. Modified dendrimers were applied to the Cotton/Nylon blend fabric. SEM and EDX analysis were performed to study the dispersion of silver nanoparticles onto the fabric. An antimicrobial test of the treated‐fabric against Staphylococcus aureus exhibited significant biocidal activities for each type of modified‐dendrimer. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
We have successfully synthesized polyacrylonitrile (PAN) nanofibers impregnated with Ag nanoparticles by electrospinning method at room temperature. Briefly, the PAN‐Ag composite nanofibers were prepared by electrospinning PAN (10% w/v) in dimethyl formamide (DMF) solvent containing silver nitrate (AgNO3) in the amounts of 8% by weight of PAN. The silver ions were reduced into silver particles in three different methods i.e., by refluxing the solution before electrospinning, treating with sodium borohydride (NaBH4), as reducing agent, and heating the prepared composite nanofibers at 160°C. The prepared PAN nanofibers functionalized with Ag nanoparticles were characterized by field emission scanning electron microscopy (FESEM), SEM elemental detection X‐ray analysis (SEM‐EDAX), transmission electron microscopy (TEM), and ultraviolet‐visible spectroscopy (UV‐VIS) analytical techniques. UV‐VIS spectra analysis showed distinct absorption band at 410 nm, suggesting the formation of Ag nanoparticles. TEM micrographs confirmed homogeneous dispersion of Ag nanoparticles on the surface of PAN nanofibers, and particle diameter was found to be 5–15 nm. It was found that all the three electrospun PAN‐Ag composite nanofibers showed strong antibacterial activity toward both gram positive and gram negative bacteria. However, the antibacterial activity of PAN‐Ag composite nanofibers membrane prepared by refluxed method was most prominent against S. aureus bacteria. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
We have previously demonstrated that TiO2 nanoparticles can be functionalized by photodeposition with silver or gold particles in the 1?C2 nm range presumed to be desirable for catalysis applications. However, the preparation of these samples directly on microscope grids, while conducive to particle size determinations, did not produce sufficient materials for reaction studies. We report here scale-up techniques designed to produce greater quantities of material for testing, while maintaining characteristics that contribute to uniformity in the deposition process. For the scale-up process, an irradiation source with highly uniform intensity is necessary to generate Ag/TiO2 samples with consistent Ag loading. In addition, control of the precursor concentration is also required to produce Ag/TiO2 samples with high Ag loading and narrow Ag size distribution. The optimum conditions for the scale-up process found in this study involved Ag photodeposition from a 5 × 10?3 M AgNO3 solution using a high pressure Hg lamp at 366 nm for 60 s. Under these reaction conditions, the size of Ag particles determined by TEM and HAADF-STEM imaging was within 1?C2 nm and the Ag loading was ~3.2 wt%. Achievement of this level of uniformity required control of the uniformity of illumination, as well as of the solution concentration and irradiation conditions. Higher solution concentrations and higher power led to the growth of larger (ca. 10 nm) silver particles. In contrast, the loading and size distribution of the Ag particles photodeposited were remarkably insensitive to the source and morphology of the TiO2 nanoparticles utilized. No Ag peak was resolved in the XRD patterns for Ag/TiO2 samples obtained from the optimized scale-up process, corroborating the size range determination of the Ag nanoparticles. XPS showed that the Ag particles in all cases were metallic Ag.  相似文献   

16.
The ammonium persulfate induced polymerization of acrylamide in the presence of silver nitrate (AgNO3) and N,N′‐methylenebisacrylamide as a crosslinking agent were used to prepare crosslinked hydrogels containing silver ions. Subjecting this hydrogel to reduction with sodium hydroxide brought to focus the nanosilver hydrogel composites. Characterization of the latter, including proof of existence of silver nanoparticles in the hydrogel, was made. The number of silver nanoparticles embedded in the hydrogel matrix was higher at higher concentration of AgNO3 used in the preparation of the nanosilver hydrogel composite. The characterization was performed by the use of ultraviolet–visible spectroscopy and transmission electron microscopy. The swellability of the hydrogel containing nanosilver particles was also studied, and the dependence of the swellability on the abundance of silver nanoparticles in the hydrogel composite was verified. It was further disclosed that the kinetic model matched the experimental data; meanwhile, the diffusion of water into the hydrogel was non‐Fickian type. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Ultrasound irradiation is used for anchoring silver nanoparticles with an average size of ~ 51 nm onto the surface of poly(methyl methacrylate) PMMA chips (2 mm diameter), and silver nanoparticles with an average size of ~ 20 nm onto the surface of the PMMA spheres (1–10 μm). The sonochemical reduction was carried out under argon atmosphere at room temperature. The silver nanoparticles were obtained by the irradiation of a mixture containing the PMMA, silver nitrate, ethylene glycol, ethanol, water, and 24% (wt) aqueous ammonia for 2 h, yielding a PMMA‐nanosilver composite. By controlling the atmosphere and reaction conditions, we could achieve the deposition of silver nanoparticles onto the surface of poly(methyl methacrylate). The silver‐deposited PMMA chips (loaded with 0.01–1.0 weight percent silver) were successfully homogenized in melt by extrusion and then injection molded into small, disc‐shaped samples. These samples were analyzed with respect to their directional spectral optical properties in UV, VIS, and IR spectroscopy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

18.
Silver-dispersed carbon aerogels (CAs) were obtained by direct immersion of organic aerogels prepared by ambient pressure drying technique in AgNO3 aqueous solution and then carbonization. The effect of preparation conditions such as the resorcinol/catalyst ratio, the feed AgNO3 concentration, the ratio of aerogel mass/solution volume, immersion time and carbonization temperature on the bulk density and silver content as well as the BET surface area of the dispersed CAs was studied. The dispersion and structure of silver nanoparticles in obtained materials were investigated by means of scanning electron microscopy, transmission electron microscopy and X-ray diffraction. The Ag-dispersed CAs prepared exhibit strong and long-term antibacterial activity.  相似文献   

19.
Ag nanoparticles were synthesized in the interlamellar space of a layered kaolinite. Disaggregation of the lamellae of the nonswelling kaolinite was achieved by the intercalation of dimethyl sulfoxide (DMSO). The kaolinite was suspended in aqueous AgNO3 solution and the adsorbed Ag+ ions were reduced on the surface of kaolinite lamellae with NaBH4 or UV light irradiation. The silver nanoparticles formed were characterized by X-ray diffraction (XRD), small angle X-ray scattering (SAXS), and transmission electron microscopy (TEM). We studied the effects of the two reduction methods on the size and the size distribution of Ag nanoparticles and how clay mineral structure is altered as a consequence of particle formation. It was established that the size of Ag nanoparticles depends on both silver content and the reduction method. Photoreduction of silver led to the formation of relatively large Ag nanoparticles (diameter 8–14 nm).  相似文献   

20.
This article reports the preparation of poly (methacrylic acid)/silver nanoparticles composite (PMAA/AgNPs) by in situ mixing of aqueous solutions of PMAA and 1 mM AgNO3 with natural honey as reducing and stabilizing agent. The prepared PMAA/AgNPs composite was characterized by UV–vis spectroscopy, Fourier transformed infrared, X-ray diffraction and energy dispersive spectroscopy (EDS) while the morphology of the AgNPs in the composite was obtained by transmission electron microscopy (TEM). TEM results revealed that the AgNPs were spherical in shape. The performance of PMAA/AgNPs composite as anticorrosion material for Al in acidic environment was examined by electrochemical, weight loss methods, complemented by surface analysis characterization with scanning electron microscopy (SEM), EDS and water contact angle measurements. Results obtained indicate that PMAA/AgNPs composite is effective corrosion inhibitor for Al in an acid-induced corrosive environment. Inhibition efficiency increased with increase in composite concentration but decreased with rise in temperature. From potentiodynamic polarization results, PMAA/AgNPs composite is found to function as a mixed-type corrosion inhibitor. The adsorption of the composite onto Al surface was found to follow El-Awady et al. adsorption isotherm model. SEM, EDS and water contact angle results confirmed the adsorption of the composite on Al surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号