首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of matching schemes for input-queued (IQ) switches that deliver high throughput under traffic with uniform distributions has been proposed. However, there is a need of matching schemes that provide high throughput under several admissible traffic patterns, including those with nonuniform distributions, while keeping implementation complexity low. In this letter, first, we introduce the captured frame concept for matching schemes in IQ switches. Second, we propose a round-robin based matching scheme, uFORM, which uses the proposed concept for cell matching eligibility. We show via simulation that our matching scheme delivers high throughput under several nonuniform traffic patterns, and retains the high performance under uniform traffic that round-robin matching schemes are known to offer.  相似文献   

2.
This paper presents and evaluates a quasi-optimal scheduling algorithm for input buffered cell-based switches, named reservation with preemption and acknowledgment (RPA). RPA is based on reservation rounds where the switch input ports indicate their most urgent data transfer needs, possibly overwriting less urgent requests by other input ports, and an acknowledgment round to allow input ports to determine what data they can actually transfer toward the desired switch output port. RPA must be executed during every cell time to determine which cells can be transferred during the following cell time. RPA is shown to be as simple as the simplest proposals of input queuing scheduling, efficient in the sense that no admissible traffic pattern was found under which RPA shows throughput limitations, and flexible, allowing the support of packet-mode operations and different traffic classes with either strict priority discipline or bandwidth guarantee requirements. The effectiveness of RPA is assessed with detailed simulations in uniform as well as unbalanced traffic conditions and its performance is compared with output queuing switches and the optimal maximum weighted matching (MWM) algorithm for input-buffered switches. A bound on the performance difference between the heuristic weight matching adopted in RPA and MWM is analytically computed  相似文献   

3.
As an alternative to input-buffered switches, combined input-crosspoint buffered switches relax arbitration timing and provide high-performance switching for packet switches with high-speed ports. It has been shown that these switches, with one-cell crosspoint buffer and round-robin (RR) arbitration at input and output ports, provide 100% throughput under uniform traffic. However, under admissible traffic patterns with nonuniform distributions, only weight-based selection schemes are reported to provide high throughput. We propose an RR based arbitration scheme for a combined input-crosspoint buffered packet switch that provides nearly 100% throughput for several admissible traffic patterns, including uniform and unbalanced traffic, using one-cell crosspoint buffers. The presented scheme uses adaptable-size frames, so that the frame size adapts to the traffic pattern.  相似文献   

4.
In this paper, we propose a grant-aware (GA) scheduling algorithm that can provide higher throughput and lower latency than a conventional dual round-robin matching (DRRM) method. In our proposed GA algorithm, when an output receives requests from different inputs, the output not only sends a grant to the selected input, but also sends a grant indicator to all the other inputs to share the grant information. This allows the inputs to skip the granted outputs in their input arbiters in the next iteration. Simulation results using OPNET show that the proposed algorithm provides a maximum 3% higher throughput with approximately 31% less queuing delay than DRRM.  相似文献   

5.
Future heterogeneous networks with dense cell deployment may cause high intercell interference. A number of interference coordination (IC) approaches have been proposed to reduce intercell interference. For dense small‐cell deployment with high intercell interference between cells, traditional forward link IC approaches intended to improve edge user throughput for best effort traffic (ie, file transfer protocol download), may not necessarily improve quality of service performance for delay‐sensitive traffic such as voice over long‐term evolution traffic. This study proposes a dynamic, centralized joint IC approach to improve forward link performance for delay‐sensitive traffic on densely deployed enterprise‐wide long‐term evolution femtocell networks. This approach uses a 2‐level scheme: central and femtocell. At the central level, the algorithm aims to maximize network utility (the utility‐based approach) and minimize network outage (the graphic‐based approach) by partitioning the network into clusters and conducting an exhaustive search for optimized resource allocation solutions among femtocells (femto access points) within each cluster. At the femtocell level, in contrast, the algorithm uses existing static approaches, such as conventional frequency reuse (ReUse3) or soft frequency reuse (SFR) to further improve user equipment quality of service performance. This combined approach uses utility‐ and graphic‐based SFR and ReUse3 (USFR/GSFR and UReUse3/GReUse3, respectively). The cell and edge user throughput of best effort traffic and the packet loss rate of voice over long‐term evolution traffic have been characterized and compared using both the proposed and traditional IC approaches.  相似文献   

6.
Input-queued packet switches use a matching algorithm to configure a nonblocking switch fabric (e.g., a crossbar). Ideally, the matching algorithm will guarantee 100% throughput for a broad class of traffic, so long as the switch is not oversubscribed. An intuitive choice is the maximum size matching (MSM) algorithm, which maximizes the instantaneous throughput. It was shown (McKeown et al. (1999)) that with MSM the throughput can be less than 100% when N /spl ges/ 3, even with Terms-Instability,benign Bernoulli i.i.d. arrivals. In this letter, we extend this result to N /spl ges/ 2, and hence show it to be true for switches of any size.  相似文献   

7.
This letter proposes an innovative pipeline-based maximal-sized matching scheduling approach, called PMM, for input-buffered switches. It dramatically relaxes the timing constraint for arbitration with a maximal matching scheme. In the PMM approach, arbitration operates in a pipelined manner. Each subscheduler is allowed to take more than one time slot for its matching. Every time slot, one of them provides the matching result. The subscheduler can adopt a pre-existing efficient round-robin-based maximal matching algorithm. We show that PMM provides 100% throughput under uniform traffic since it preserves a desynchronization effect of the round-robin pointers as in the preexisting algorithm. In addition, PMM maintains fairness for best-effort traffic due to the round-robin-based arbitration  相似文献   

8.
针对星上交换的特殊要求,该文提出了基于MSM (Memory-Space-Memory)型Clos交换网络的分治调度算法。通过引入冲突域的概念,分治调度算法将MSM型Clos网络中的匹配问题分解成在冲突域内为每个中间级模块选择信元的问题。该调度算法限制了冲突发生的范围,简化了调度的复杂度,并且具有硬件实现简单、能适应多种业务等优点。仿真表明,分治调度算法在各种业务模型下的吞吐率都能接近100%,并具有良好的时延性能,满足了卫星通信的要求。  相似文献   

9.
Development of efficient medium access control (MAC) protocols providing both high throughput performance for data traffic and good quality of service (QoS) support for real-time traffic is the current major focus in distributed contention-based MAC protocol research. In this paper, we propose an efficient contention resolution algorithm for wireless local area networks, namely, the fast collision resolution (FCR) algorithm. The MAC protocol with this new algorithm attempts to provide significantly higher throughput performance for data services than the IEEE 802.11 MAC algorithm and more advanced dynamic tuning backoff (DTB) algorithm. We demonstrate that this algorithm indeed resolves collisions faster and reduces the idle slots more effectively. To provide good fairness performance and to support good QoS for real-time traffic, we incorporate the self-clocked fair queueing algorithm and a priority scheme into the FCR algorithm and come up with the real-time FCR (RT-FCR) algorithm, and show that RT-FCR can simultaneously achieve high throughput and good fairness performance for nonreal-time traffic while maintaining satisfactory QoS support for real-time traffic.  相似文献   

10.
Widespread deployment of wireless local area networks and a gradual increase in streaming applications have brought about a demand for improved quality of service (QoS) in wireless networks. However, increasing user datagram protocol based high priority multimedia traffic and the class differentiation introduced in QoS protocols, has resulted into transmission control protocol (TCP) starvation and increased spurious timeouts. While today’s Internet traffic is still dominated by TCP based applications, the negative effects of IEEE 802.11e enhanced distributed coordination function (EDCF) scheme on TCP performance in the presence of high priority traffic have not been extensively explored. In this paper, the performance of TCP in 802.11e WLAN competing with high priority traffic is examined. The prioritised adaptive enhanced scheme (PAD_EDCF) is proposed. The proposed scheme gives priority to TCP control packets in order to improve the low traffic transmission flow and acquires additional capability of adjusting the MAC parameters based on the traffic load condition. Simulation results demonstrate that the proposed scheme significantly improves TCP performances in terms of traffic efficiency, throughput and reduces delay.  相似文献   

11.
Current schemes for configuration of input-queued three-stage Clos-network (IQC) switches involve port matching and path routing assignment, in that order. The implementation of a scheduler capable of matching thousands of ports in large-size switches is complex. To decrease the scheduler complexity for such switches (e.g., 1024 ports or more), we propose a configuration scheme for IQC switches that hierarchizes the matching process. In a practical scenario our scheme performs routing first and port matching thereafter. This approach reduces the scheduler size and the configuration complexity of IQC switches. We show that the switching performance of the proposed approach using weight-based and weightless selection schemes is high under uniform and nonuniform traffic  相似文献   

12.
DQCA is a near-optimum Medium Access Control (MAC) protocol designed for Wireless Local Access Networks (WLANs). The protocol operates as a random access scheme under low traffic load and switches smoothly and automatically to a reservation scheme as the traffic grows. The inherent feedback mechanism of DQCA facilitates the implementation of a link adaptation algorithm that properly selects the best transmission rate taking into account the state of the wireless channel. This paper presents an analytical model for the evaluation of the performance in terms of throughput and mean message delay in the presence of a time-variant channel response.  相似文献   

13.
Input-buffered switches have been widely considered for implementing feasible packet switches. However, their matching process may not be time-efficient for switches with high-speed ports. Buffered crossbars (BXs) are an alternative to relax timing for packet switches with high-speed ports and to provide high-performance switching. BX switches were originally considered expensive, as the memory amount required in the crosspoints (XPs) is proportional to the square of the number of ports (O(N/sup 2/)). This limitation is now less stringent with the advances on chip-fabrication techniques, and when considering small crosspoint (XP) buffer sizes. In this paper, we study a combined input-crosspoint buffered packet switch, named CIXB, with virtual output queues (VOQs) at the inputs, and arbitration based on round-robin selection. We show that the CIXB switch achieves 100% throughput under uniform traffic, and high performance under nonuniform traffic, using one-cell XP buffer size and no speedup.  相似文献   

14.
The asynchronous transfer mode (ATM) is the choice of transport mode for broadband integrated service digital networks (B-ISDNs). We propose a window-based contention resolution algorithm to achieve higher throughput for nonblocking switches in ATM environments. In a nonblocking switch with input queues, significant loss of throughput can occur due to head-of-line (HOL) blocking when first-in first-out (FIFO) queueing is employed. To resolve this problem, we employ bypass queueing and present a cell scheduling algorithm which maximizes the switch throughput. We also employ a queue length based priority scheme to reduce the cell delay variations and cell loss probabilities. With the employed priority scheme, the variance of cell delay is also significantly reduced under nonuniform traffic, resulting in lower cell loss rates (CLRs) at a given buffer size. As the cell scheduling controller, we propose a neural network (NN) model which uses a high degree of parallelism. Due to higher switch throughput achieved with our cell scheduling, the cell loss probabilities and the buffer sizes necessary to guarantee a given CLR become smaller than those of other approaches based on sequential input window scheduling or output queueing  相似文献   

15.
802.11无线局域网中AP放置与信道配置的联合算法   总被引:2,自引:0,他引:2  
在多小区无线局域网规划中,接入访问点(AP)放置与信道配置是两个重要的任务。在给定用户业务需求的条件下,谋求最大系统吞吐率和资源分配的公平性是网络规划的目标,其中公平性由吞吐率均衡因子表征。在传统的规划策略中,AP放置与信道配置被分割为两个先后的步骤;而该文提出的目标函数则将这两个问题联合解决以得到更好的系统性能。当采用全局遍历时,对目标函数寻求全局最优解计算量庞大;因此该文又提出了一种有效的局部最优解搜索算法补丁算法,此算法计算量小,同时能较好地逼近全局最优解。  相似文献   

16.
Current MSM switching fabric has poor performance under unbalanced traffic. This paper presents an alternative, novel Central-stage Buffered Three-stage Clos switching (CB-3Clos) fabric and proves that this fabric can emulate output queuing switch without any speedup. By analyzing the condition to satisfy the central-stage load-balance, this paper also proposes a Central-stage Load-balanced-based Distributed Scheduling algorithm (CLDS) for CB-3Clos. The results show that, compared with Concurrent Round-Robin based Dispatching (CRRD) algorithm based on MSM, CLDS algorithm has high throughput irrespective with the traffic model and better performance in mean packet delay.  相似文献   

17.
Providing quality of service (QoS) to different service classes with integrated real-time and non-real-time traffic is an important issue in broadband wireless access networks. Opportunistic MAC (OMAC) is a novel view of communication over spatiotemporally varying wireless link whereby the multi-user diversity is exploited rather than combated to maximize bandwidth efficiency or system throughput. It combines cross-layer design features and opportunistic scheduling scheme to achieve high utilization while providing QoS support to various applications. Channel characteristics, traffic characteristics and queue characteristics are the essential factors in the design of opportunistic scheduling algorithms. In this paper, we propose a cross-layer MAC scheduling framework in WiMAX point-to-multipoint (PMP) systems and a corresponding opportunistic scheduling algorithm with an adaptive power control scheme to provide QoS support to the heterogeneous traffic. Extensive simulation experiments have been carried out to evaluate the performance of our proposal. The simulation results show that our proposed solution can improve the performance of the WiMAX PMP systems in terms of packet loss rate, packet delay and system throughput.  相似文献   

18.
This paper presents a class of algorithms for scheduling packets in input-queued switches. As opposed to previously known algorithms that focus only on achieving high throughput, these algorithms seek to achieve low average delay without compromising the throughput achieved. Packet scheduling in input-queued switches based on the virtual-output-queued architecture is a bipartite graph matching problem wherein ports are represented by vertices and the traffic flows by the edges. The set of matched edges determine the packets that are to be transferred from the input ports to the output ports. Current matching algorithms implicitly prioritize high-degree vertices, i.e., ports with a large number of flows, causing longer delays at ports with a smaller number of flows. Motivated by this observation, we present three matching algorithms based on explicitly prioritizing low-degree vertices and the edges through them. Using both real gateway traffic traces as well as synthetically generated traffic, we present simulation results showing that this class of algorithms achieves a low average delay as compared to other scheduling algorithms of equivalent complexity while still achieving similar throughput. We also show that these algorithms determine the maximum size matching in almost all cases.  相似文献   

19.
Li  S. Ansari  N. 《Electronics letters》1998,34(19):1826-1827
A new scheduling algorithm is proposed to improve on existing algorithms designed for input-queued ATM switches. By assigning a session weight according to its queue length normalised by its rate and using maximum weight matching to obtain a match, the proposed algorithm can avoid starvation of slow sessions, thus providing good delay properties as well as fair services, and at the same time reducing traffic burstiness  相似文献   

20.
This paper investigates a wireless system with multi-Unmanned Aerial Vehicles (UAVs) for improving the overall throughput. In contrast to previous studies that optimize the locations of UAVs and channel assignment separately, this paper considers the two issues jointly by exploiting Partially Overlapped Channels (POCs). The optimization problem of maximizing network throughput is formulated as a non-convex and non-linear problem. In order to find a practical solution, the problem is decomposed into two subproblems, which are iteratively optimized. First, the optimal locations of UAVs are determined under a fixed channel assignment scheme by solving the mixed-integer second-order cone problem. Second, an efficient POC allocation scheme is determined via the proposed channel assignment algorithm. Simulation results show that the proposed approach not only significantly improves system throughput and service reliability compared with the cases in which only orthogonal channels and stationary UAVs are considered, but also achieves similar performance using the exhaustive search algorithm with lower time complexity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号