首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elephant grass stalk fibers were extracted using retting and chemical (NaOH) extraction processes. These fibers were treated with KMnO4 solution to improve adhesion with matrix. The resulting fibers were incorporated in a polyester matrix and the tensile properties of fiber and composite were determined. The fibers extracted by retting process have a tensile strength of 185 MPa, modulus of 7.4 GPa and an effective density of 817.53 kg/m3. The tensile strength and modulus of chemically extracted elephant grass fibers have increased by 58 and 41%, respectively. After the treatment the tensile strength and modulus of the fiber extracted by retting have decreased by 19, 12% and those of chemically extracted fiber have decreased by 19 and 16%, respectively. The composites were formulated up to a maximum of 31% volume of fiber resulting in a tensile strength of 80.55 MPa and tensile modulus of 1.52 GPa for elephant grass fibers extracted by retting. The tensile strength and the modulus of chemically extracted elephant grass fiber composites have increased by approximately 1.45 times to those of elephant grass fiber composite extracted by retting. The tensile strength of treated fiber composites has decreased and the tensile modulus has shown a mixed trend for the fibers extracted by both the processes. Quantitative results from this study will be useful for further and more accurate design of elephant grass fiber reinforced composite materials.  相似文献   

2.
In this paper, the experiments of tensile and flexural tests were carried out on composites made by reinforcing jowar as a new natural fibre into polyester resin matrix. The samples were prepared up to a maximum volume fraction of approximately 0.40 from the fibres extracted by retting and manual process, and compared with established composites like sisal and bamboo developed under similar laboratory conditions. Jowar fibre has a tensile strength of 302 MPa, modulus of 6.99 GPa and an effective density of 922 kg/m3. It was observed that the tensile strength of jowar fibre composite is almost equal to that of bamboo composite, 1.89 times to that of sisal composite and the tensile modulus is 11% and 45% greater than those of bamboo and sisal composites, respectively at 0.40 volume fraction of fibre. The flexural strength of jowar composite is 4%, 35% and the flexural modulus is 1.12 times, 2.16 times greater than those of bamboo and sisal composites, respectively. The results of this study indicate that using jowar fibres as reinforcement in polyester matrix could successfully develop a composite material in terms of high strength and rigidity for light weight applications compared to conventional sisal and bamboo composites.  相似文献   

3.
The aim of this study is to investigate the reinforcing effect of woven and unidirectional glass fibers and the effect of post-curing on the flexural strength and flexural modulus of glass fiber-reinforced composites. A series of composites containing 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane and triethyleneglycol dimethacrylate matrices and different reinforcements of unidirectional or woven glass fibers were prepared. The samples, 25 × 2 × 2 mm, were cured with a halogen curing lamp, followed by additional curing by thermal treatment at 135 ± 5 °C temperature and 60 psi pressure. Samples were tested before and after post-curing in order to determine the flexural strength and flexural modulus. The degree of reinforcement with glass fibers was varied between 14 and 57 wt% or 7.64 and 38.44 vol% by changing the number of unidirectional bundles or woven glass fiber bands in the composites, respectively. The obtained flexural strength values were in the range of 95.20–552.31 Mpa; the flexural modulus ranged between 2.17 and 14.7 GPa. The highest flexural strength and flexural modulus values were recorded for samples with unidirectional glass fibers. The mechanical qualities of the glass fibers-reinforced composites increased after post-curing treatment. Increasing of the glass fiber amount in the experimental composites improves both flexural strength and modulus. SEM micrographs of fractured composites indicate a strong interfacial interaction between the glass fibers and the polymer matrix.  相似文献   

4.
《Composites Part B》2007,38(3):367-379
This paper evaluates the effect of the addition of silane treated- and untreated- talc as the fillers on the mechanical and physico-mechanical properties of poly(lactic acid) (PLA)/recycled newspaper cellulose fibers (RNCF)/talc hybrid composites. For this purpose, 10 wt% of a talc with and without silane treatment were incorporated into PLA/RNCF (60 wt%/30 wt%) composites that were processed by a micro-compounding and molding system. PLA is utilized is a bio-based polymer that made from dextrose, a derivative of corn. Talc is also a natural product. The RNCF and talc hybrid reinforcements of PLA polymer matrix were targeted to design and engineer bio-based composites of balanced properties with added advantages of cost benefits besides the eco-friendliness of all the components in the composites. In this work, the flexural and impact properties of PLA/RNCF composites improved significantly with the addition of 10 wt% talc. The flexural and impact strength of these hybrid composites were found to be significantly higher than that made from either PLA/RNCF. The hybrid composites showed improved properties such as flexural strength of 132 MPa and flexural modulus of 15.3 GPa, while the unhybridized PLA/RNCF based composites exhibited flexural strength and modulus values of 77 MPa and 6.7 GPa, respectively. The DMA storage modulus and the loss modulus of the PLA/RNCF hybrid composites were found to increase, whereas the mechanical loss factor (tan delta) was found to decrease. The storage modulus increased with the addition of talc, because the talc generated a stiffer interface in the polymer matrix. Differential scanning calorimetry (DSC) thermograms of neat PLA and of the hybrid composites showed nearly the similar glass transition temperatures and melting temperatures. Scanning electron microscopy (SEM) micrographs of the fracture surface of Notched Izod impact specimen of 10 wt% talc filled PLA/RNCF composite showed well filler particle dispersion in the matrix and no large aggregates are present. The comparison data of mechanical properties among samples filled with silane-treated- and untreated- talc fillers showed that the hybrid composites filled with silane treated talc displayed the better mechanical prosperities relative to the other hybrid composites. Talc-filled RNCF-reinforced polypropylene (PP) hybrid composites were also made in the same way that of PLA hybrid composites for a comparison. The PLA hybrid bio-based composites showed much improvement in mechanical properties as compared to PP-based hybrid counterparts. This suggests that these PLA hybrid bio-based composites have a potential to replace glass fibers in many applications that do not require very high load bearing capabilities and these recycled newspaper cellulose fibers could be a good candidate reinforcement fiber of high performance hybrid biocomposites.  相似文献   

5.
We aim to produce unidirectional fiber composites with high mechanical performance based on flax fibers and a rigid gliadin matrix. As a fraction from wheat gluten, gliadin is soluble in alcohol containing media. The fabrication process did not involve any further solvents or plasticizers. Finally, samples were cooled at different rates. Overall, the cooling rate does not strongly affect the mechanical properties although slowly cooled materials contain a higher amount of non-disulfide cross-links, next to disulfide bonds within the gliadin matrix. At 40% fiber volume fraction, flax/gliadin composites with a flexural modulus and strength of respectively 21.5 GPa and 240 MPa were obtained when loaded in the longitudinal direction. These high values demonstrate that in this composite fabrication process, a good impregnation of the polymer matrix in between the fiber bundles has been achieved. However, the fiber–matrix adhesion, as measured by transverse flexural and tensile tests, was still relatively modest.  相似文献   

6.
A novel biocomposite of carbon fiber (CF) reinforced hydroxyapatite (HA)/polylactide (PLA) was prepared by hot pressing a prepreg which consisting of PLA, HA and CF. The prepreg was manufactured by solvent impregnation process. Polymer resin PLA dissolved with chloroform was mixed with HA. After reinforcement CF bundle was impregnated in the mixture, the solvent was dried completely and subsequently hot-pressed uniaxially under a pressure of 40 MPa at 170°C for 20 min. A study was carried out to investigate change in mechanical properties of CF/HA/PLA composites before and after degradation in vitro. The composites have excellent mechanical properties. A peak showed in flexural strength, flexural modulus and shear strength aspects, reaching up 430 MPa, 22 GPa, 212 MPa, respectively, as the HA content increased. Degraded in vitro for 3 months, the flexural strength and flexural modulus of the CF/HA/PLA fell 13.2% and 5.4%, respectively, while the shear strength of the CF/HA/PLA composites remains at the 190 MPa level. The SEM photos showed that there were gaps between the PLA matrix and CF after degradation. Water uptake increased to 5%, but the mass loss rate was only 1.6%. The pH values of the PBS dropped less than 0.1. That’s because the alkaline of HA neutralize the acid degrades from PLA, which can prevent the body from the acidity harm.  相似文献   

7.
The aim of this study was to determine the effect of different span lengths of flexural testing on some properties of test specimens made of experimental short fiber reinforced composite resin (FC). Bar shaped specimens with different lengths were made from experimental FC composite with an average fiber length of 3 mm and particulate filler composite (PFC, control: Z250). The specimens (n = 8) were polymerized with a hand light-curing unit for 40 s and dry stored in a room temperature for 24 h before testing. Three-point flexural test for determination of ultimate flexural strength, toughness and flexural modulus of specimens was made with different span lengths (20, 15, 10, 7, 6, 5 mm) with a speed of 1.0 mm/min until fracture. By shortening the span length for specimens made of FC or PFC, the flexural modulus decreased (from ca. 11 to 4 GPa) and flexural toughness increased (from ca. 0.25 to 2.25 MPa). Reduction in flexural strength by shortening the span length was found with PFC (from 170 to 125 MPa) but not with FC, which showed reduction by span lengths from 20 to 7 mm and considerable increase of flexural strength by further shortening the span length from 7 to 5 mm. Shortening of span length of flexural testing showed linear reduction of the measured and calculated flexural properties of PFC and some properties of FC, but flexural strength values for FC were non-linearly related to the span length: the highest values were obtained with the longest and the shortest span lengths. In reporting the flexural values of composites, the span length—specimen dimension ratio, and the length of the reinforcement need to be taken into consideration.  相似文献   

8.
Some mechanical properties of oligomer-modified acrylic bone cement with glass-fibers were studied. Under wet environments, oligomer-filler forms a porous structure in the acrylic bone cement. Test specimens were manufactured using commercial bone cement (Palacos® R) with different quantities of an experimental oligomer-filler (0–20 wt%), and included continuous unidirectional E-glass fibers (l=65 mm) or chopped E-glass fibers (l=2 mm). The specimens were either tested dry, or after being immersed under wet environments for one week. The three-point bending test was used to measure the flexural strength and modulus of the acrylic bone cement composites (analysis with ANOVA). A scanning electron microscope (SEM) was used to examine the surface structure of the acrylic bone cement composites. Using continuous glass-fiber reinforcement, the dry flexural strength was 145 MPa and modulus was 4.6 GPa for the plain bone cement. For the test specimens with 20 wt% of oligomer-filler and continuous unidirectional glass-fibers, the dry flexural strength was 118 MPa and modulus was 4.2 GPa, whereas the wet flexural strength was 66 MPa and modulus was 3.0 GPa. The results suggest that the reduced flexural properties caused by the porosity of oligomer-modified bone cement can be compensated with glass-fiber reinforcement.  相似文献   

9.
Natural biocomposites were prepared from flax fibers and mucilage polysaccharides extracted from flax seeds, as a matrix, in two steps: impregnation and compression molding. The ribbons were preimpregnated with water plasticized mucilage. Solid mucilage (30%, w/w) was added to the ribbon impregnated with 20% mucilage, and the composite was compression molded. The solidified mucilage was homogeneous and rigid (2 GPa) with an elastic deformation of approximately 1%. The mechanical properties of the composites were in the ranges of 7–10 GPa, 300–400 MPa and 4–5% for the modulus, maximal strength and strain, respectively. The two latter parameters were larger than the ones for the fiber. The experimental values of the modulus and strength were in accordance with the values computed using the rule of mixture, which indicated a good interface between the fibers and the matrix. This was confirmed visually with scanning electron microscopy. The water sorption behavior of the composites was intermediate between the mucilage and the fiber alone.  相似文献   

10.
The main focus of this study is to utilize waste grass broom natural fibers as reinforcement and polyester resin as matrix for making partially biodegradable green composites. Thermal conductivity, specific heat capacity and thermal diffusivity of composites were investigated as a function of fiber content and temperature. The waste grass broom fiber has a tensile strength of 297.58 MPa, modulus of 18.28 GPa, and an effective density of 864 kg/m3. The volume fraction of fibers in the composites was varied from 0.163 to 0.358. Thermal conductivity of unidirectional composites was investigated experimentally by a guarded heat flow meter method. The results show that the thermal conductivity of composite decreased with increase in fiber content and the quite opposite trend was observed with respect to temperature. Moreover, the experimental results of thermal conductivity at different volume fractions were compared with two theoretical models. The specific heat capacity of the composite as measured by differential scanning calorimeter showed similar trend as that of the thermal conductivity. The variation in thermal diffusivity with respect to volume fraction of fiber and temperature was not so significant.The tensile strength and tensile modulus of the composites showed a maximum improvement of 222% and 173%, respectively over pure matrix. The work of fracture of the composites with maximum volume fraction of fibers was found to be 296 Jm−1.  相似文献   

11.
In this paper, midrib of coconut palm leaves (MCL) was investigated for the purpose of development of natural fiber reinforced polymer matrix composites. A new natural fiber composite as MCL/polyester is developed by the hand lay-up method, and the material and mechanical properties of the fiber, matrix and composite materials were evaluated. The effect of fiber content on the tensile, flexural, impact, compressive strength and heat distortion temperature (HDT) was investigated. It was found that the MCL fiber had the maximum tensile strength, tensile modulus flexural strength, flexural modulus and Izod impact strength of 177.5MPa, 14.85GPa, 316.04MPa and 23.54GPa, 8.23KJ/m2 respectively. Reinforcement of MCL enhanced the mechanical properties of pure polyester, including that of tensile strength (by 26%), tensile modulus (by 356%), flexural strength (by 41.81%), flexural modulus (by 169%) and Izod impact strength (by 23 times), but the compressive strength was adversely affected. HDT decreased due to fiber loading, but increased with weight fraction of fiber content. Moreover, the experimental results were compared with theoretical model (Rule of mixture) and other natural fiber /polyester composites.  相似文献   

12.
采用环状对苯二甲酸丁二醇酯(CBT)原位聚合制备了连续玻璃纤维(GF)增强聚环状对苯二甲酸丁二醇酯(PCBT)复合材料。考察了聚合反应中催化剂用量对PCBT结晶度以及GF/PCBT复合材料力学性能的影响。当催化剂用量为0.5%(质量分数)时, PCBT的结晶度为53%, GF/PCBT的力学性能达到最佳, 拉伸强度为522 MPa, 拉伸模量为27 GPa, 弯曲强度为481 MPa, 弯曲模量为24.8 GPa, 层间剪切强度(ILSS)为43 MPa。SEM观察表明, 发现催化剂用量为0.5%时, 树脂与纤维的结合性较好。进一步研究了淬火和退火后处理对复合材料力学性能的影响。发现复合材料退火处理后具有较好的力学性能, 其中拉伸强度为545 MPa, 弯曲强度为495 MPa。  相似文献   

13.
C/SiC–ZrB2 composites prepared via precursor infiltration and pyrolysis (PIP) were treated at high temperatures ranging from 1200 °C to 1800 °C. The mass loss rate of the composites increased with increasing annealing temperature and the flexural properties of the composites increased initially and then decreased reversely. Out of the four samples, the flexural strength and the modulus of the specimen treated at 1400 °C are maximal at 216.9 MPa and 35.5 GPa, suggesting the optimal annealing temperature for mechanical properties is 1400 °C. The fiber microstructure evolution during high-temperature annealing would not cause the decrease of fiber strength, and moderate annealing temperature enhanced the thermal stress whereas weakened the interface bonding, thus boosting the mechanical properties. However, once the annealing temperature exceeded 1600 °C, element diffusion and carbothermal reduction between ZrO2 impurity and carbon fibers led to fiber erosion and a strong interface, jeopardizing the mechanical properties of the composites. The mass loss rate and linear recession rate of composites treated at 1800 °C are merely 0.0141 g/s and 0.0161 mm/s, respectively.  相似文献   

14.
Mechanical properties of aligned long harakeke fibre reinforced epoxy with different fibre contents were evaluated. Addition of fibre was found to enhance tensile properties of epoxy; tensile strength and Young’s modulus increased with increasing content of harakeke fibre up to 223 MPa at a fibre content of 55 wt% and 17 GPa at a fibre content of 63 wt%, respectively. The flexural strength and flexural modulus increased to a maximum of 223 MPa and 14 GPa, respectively, as the fibre content increased up to 49 wt% with no further increase with increased fibre content. The Rule of Mixtures based model for estimating tensile strength of aligned long fibre composites was also developed assuming composite failure occurred as a consequence of the fracture of the lowest failure strain fibres taking account porosity of composites. The model was shown to have good accuracy for predicting the strength of aligned long natural fibre composites.  相似文献   

15.
The objective of this work was to investigate the use of hydrothermal pre-treatment and enzymatic retting to remove non-cellulosic compounds and thus improve the mechanical properties of hemp fibre/epoxy composites. Hydrothermal pre-treatment at 100 kPa and 121 °C combined with enzymatic retting produced fibres with the highest ultimate tensile strength (UTS) of 780 MPa. Compared to untreated fibres, this combined treatment exhibited a positive effect on the mechanical properties of hemp fibre/epoxy composites, resulting in high quality composites with low porosity factor (αpf) of 0.08. Traditional field retting produced composites with the poorest mechanical properties and the highest αpf of 0.16. Hydrothermal pretreatment at 100 kPa and subsequent enzymatic retting resulted in hemp fibre composites with the highest UTS of 325 MPa, and stiffness of 38 GPa with 50% fibre volume content, which was 31% and 41% higher, respectively, compared to field retted fibres.  相似文献   

16.
采用聚乙烯醇(PVA)交联对洋麻(KF)增强聚丙烯(PP)、棕榈(PF)增强聚丙烯(PP)复合材料进行改性,通过模压成型工艺制备KF/PP和PF/PP复合材料。研究不同交联方法对复合材料的结构和性能的影响,采用SEM、DMA等技术研究了改性对复合材料的界面结合及力学性能影响。结果表明:PVA协同偶联剂交联改性对天然纤维/PP复合材料的综合改性效果最好,当用5%PVA+3%偶联剂对KF/PP改性时,KF/PP复合材料的弯曲强度提升25.2%,弯曲模量提升35.49%,剪切强度提升28%,分别达到了50.90 MPa、5.76 GPa、5.4MPa。当用5%PVA+2%偶联剂对PF/PP改性时,PF/PP复合材料的弯曲强度提升31.46%,弯曲模量提升27.07%,剪切强度提升21.75%,分别达到44.33MPa、2.32GPa、5.18MPa。改性后KF/PP、PF/PP复合材料的含水率分别下降了46.89%、10.63%,吸水率分别下降了8.57%、6.12%。KF/PP改性后储能模量提高20.93%,PF/PP改性后Tg值由90.1℃上升到113.8℃。SEM表明:PVA协同偶联剂交联改性有效改善了纤维与PP间的粘结,纤维与PP间的界面结合得到改善。  相似文献   

17.
In this study, a series of cementitious composites with high toughness and flexural strength was obtained by melt-dispersing ultra-high molecular weight polyethylene (UHMWPE) into a cement matrix followed by water immersion. The structure and chemical composition of the composites were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Three point bending tests showed that the flexural strengths of the composites were improved from 5.5 MPa to 18.2 MPa with the presence of 25 wt% UHMWPE, and could be further enhanced to 28.1 MPa with the addition of only 0.1 vol% oriented thermotropic liquid crystalline copolyester (TLCP) fibers. An adhesive test revealed that the interfacial binding force between polymer and fiber was much stronger than that between cement and fiber. Our findings provide a simple way for utilizing polymer to improve the interface between the fibers and cement matrix, consequently achieving a dramatic increase in the flexural strength and toughness.  相似文献   

18.
Natural fiber composite materials are one such capable material which replaces the conventional and synthetic materials for the practical applications where we require less weight and energy conservation. The present paper, which emphasis the importance of the newly identified snake grass fibers which are extracted from snake grass plants by manual process. In this paper, the tensile properties of the snake grass fiber are studied and compared with the traditionally available other natural fibers. The mixed chopped snake grass fiber reinforced composite is prepared by using the isophthallic polyester resin and the detailed preparation methodology is presented. Fiber pull-outs on the fractured specimen during the physical testing of the composites are also investigated. The experimental evidence also shows that the volume fraction increases the tensile, flexural strength and modulus of the snake grass fiber reinforce composite.  相似文献   

19.
Like ordinary Portland cement concrete, the matrix brittleness in geopolymer composites can be reduced by introducing appropriate fiber reinforcement. Several studies on fiber reinforced geopolymer composites are available, however there is still a gap to understand and optimize their performance. This paper presents the flexural behavior of fly ash-based geopolymer composites reinforced with different types of macro steel and polypropylene fibers with higher aspect ratio. Three types (length-deformed, end-deformed and straight) of steel fibers and another type of length-deformed polypropylene fiber with optimum fiber volume fraction of 0.5% are studied. The effects of different geometries of the fibers, curing regimes (ambient cured and heat cured at 60 °C for 24 h) and concentration of NaOH activator (10 M and 12 M) on the first peak strength, modulus of rupture and toughness of the geopolymer composites are investigated. The quantitative effect of fiber geometry on geopolymer composite performance was also analyzed through a fiber deformation ratio. The compressive strength, splitting tensile strength and flexural toughness are significantly improved with macro fibers reinforcement and heat curing. The results also show that heat curing increases the first peak load of all fiber-reinforced geopolymers composites. End-deformed steel fibers exhibit the most ductile flexural response compared to other steel fibers in both heat and ambient-cured fiber reinforced geopolymer composites.  相似文献   

20.
为制备兼具力学性能和电磁吸收性能的结构型吸波材料,采用真空辅助成型工艺设计制备一种以羰基铁粉(CIP)为吸收剂,玻璃纤维(GF)为透波层,碳纤维(CF)为反射层,环氧树脂(EP)为基体的吸波复合材料。研究了不同质量比CIP/EP对吸波复合材料力学性能和微波吸收性能的影响。通过FTIR和DSC分析可知CIP未与EP发生化学反应。SEM结果表明CIP能够在EP树脂基体中均匀分散,不趋向于纤维表面。力学测试分析结果显示:当CIP/EP质量比达到30%时,CIP/GF/CF/EP复合材料的力学性能最佳,拉伸强度为347.56MPa,拉伸模量为25.99GPa,较纯GF/CF/EP复合材料提升了4.3%和5.7%;弯曲强度为339.6MPa,弯曲模量为23.7GPa,较纯GF/CF/EP复合材料提升了18.2%和71.2%。矢量网络分析可知复合吸波板的吸波性能随CIP含量的增加而增加,且吸波损耗反射峰值朝低频段移动。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号