首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Rock bolts used for the reinforcement of underground mines, tunnels and nuclear waste repositories are made up of low and medium carbon steels, and high strength low alloy steels. Typical rock bolt systems used for rock reinforcement are mechanically anchored bolts, grout anchored, frictional rock stabilizers and strand anchors. For nuclear waste repository sites such as Yucca Mountain (YM) as well as for mines and tunnels, in addition to mechanical properties, corrosion properties are also important due to potential seepage of water through the fractures or pores in the rock. During temporary rock support period of 50-100 years, the temperature of the tunnel at YM should be maintained at ambient conditions. For any reason if the rock bolts are exposed to YM waters and high temperatures in the tunnel then there is a chance of corrosion of steel rock bolts. In this study an attempt was made to study the corrosion properties of various potential rock bolts for YM tunnel support via the aid of electrochemical corrosion testing. At ambient temperature (25 °C) all the rock bolts that were studied showed good corrosion resistance in these waters. At higher temperatures, 60 °C and 90 °C, corrosion resistance of rock bolts decreased, but due to special stress relief heat treatment of one of the frictional rock stabilizers (Swellex Mn 24) the corrosion rates were lower than all other tested rock bolts. Note: Swellex, Split set and Williams are the proprietary names of Atlas Copco, International Roll Forms, Inc. and Williams Form Engineering Corp, respectively.  相似文献   

2.
A continuous dynamic model for the axial vibration of a rock bolt system is presented. The model comprises three sections: the fixed length, bonded into the rock, the free length, which is not coupled to the rock, and the protruding length, which extends beyond the rock. The head assembly is modelled as a discrete mass and a spring, and a further discrete mass is included, representing a testing device that can be attached to the protruding end. Each section is modelled as a continuous elastic rod governed by the wave equation, with suitable compatibility conditions applied between the sections and boundary conditions, which also account for the effect of the discrete components, applied at the ends. Solutions in non-dimensional form are substituted into the boundary conditions to allow the natural frequencies to be calculated, and it is shown that two possible solutions for the mode shapes can be used for the fixed length—an exponential solution or the classical sinusoidal solution—depending on the stiffness of the grout relative to that of the bar. The conditions for which the two solutions are valid are developed, and changes in the frequency ratio with changes in length ratio, and the stiffness ratios of the grout and the anchor head relative to the stiffness of the fixed length of the anchorage are examined. Generally, the state of a bolt after installation is unknown and this does not provide proper assurance of the safety of the structure for which the bolts are used. The model provides a viable tool for helping to assess the condition of the bolt by using the natural frequencies associated with areas of the bolt of particular interest, e.g. the free length. The results show how the changes in the stiffness and/or length ratios affect the dynamics associated with fixed length of the bolt and the quality of the bonding installation. A case study is presented showing how the model can be used effectively to interpret real data.  相似文献   

3.
This paper represents the result of a project conducted with developing a safe, practical and economical support system for engineering workings. In rock engineering, untensioned, fully cement-grouted rock bolts have been used for many years. However, there is only limited information about the action and the pull-out load capacity of rock bolts, and the relationship between bolt–grout or grout–rock and the influence of the grout properties on the pull-out load capacity of a rock bolt. The effect of grout properties on the ultimate bolt load capacity in a pull-out test has been investigated in order to evaluate the support effect of rock bolts. Approximately 80 laboratory rock bolt pull-out tests in basalt blocks have been carried out in order to explain and develop the relations between the grouting materials and untensioned, fully grouted rock bolts. The effects of the mechanical properties of grouting materials on the pull-out load capacity of a fully grouted bolt have been qualified and a number of empirical formulae have been developed for the calculating of the pull-out load capacity of the fully cement-grouted bolts on the basis of the shear strength, the uniaxial compressive strength of the grouting material, the bolt length, the bolt diameter, the bonding area and the curing time of the grouting material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号