首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Calculations of critical loads of acidity within Europe have shown Galicia to be one of the regions in Spain with the highest risk of soil acidification by deposition of atmospheric pollutants. We used the simple mass balance method (SMB) to derive critical loads of sulphur and nitrogen for forest soils in Galicia using available site-specific information. Exceedance of acidic deposition was calculated using the deposition levels of N and S registered in 2001. Most forest ecosystems analysed can support acid loads of more than 2000 eq N ha(-1) year(-1). The lowest critical loads of acidity (1483 eq ha(-1) year(-1)) occurred in coniferous forest stands growing on shallow soils developed on slates, in the interior zone. The highest critical load values (9386 eq ha(-1) year(-1)) were observed in coniferous stands in zones with elevated precipitation rates, in the littoral area. The critical load for acidity was exceeded in 5% of the forest soils. Such exceedances were mainly caused by deposition of nitrogen compounds. The contribution of sulphur deposition to acid exceedance was important in the surroundings of the city of A Coru?a. Analysis of rainfall bulk composition revealed that N deposition in Galicia was mainly due to ammonium emissions, probably derived from agricultural and cattle breeding activities.  相似文献   

2.
Up to now, critical loads calculations for the Flemish Region were based on European background data of surrounding countries. A first attempt has been made to calculate and map critical loads for forest ecosystems in Flanders using available site-specific information. Values of current deposition were used to calculate and map exceedances. The lowest critical loads for acidification (697 eq ha(-1)year(-1)) occur in the Campine and the north of Limburg where ecosystems largely consist of coniferous forests on poor sandy soils. The dominance of coniferous forest types in the Campine is also responsible for low critical load values for eutrophication (between 536 and 971 eq ha(-1)year(-1)). In 75% of the receptor points that have been considered an exceedance of the critical load for acidification is noted, primarily in areas with high SO2 and NOx depositions, such as the north of the provinces East and West Flanders and Antwerp. The critical load for eutrophication is exceeded in all points considered. Exceedances are particularly high in coniferous forests in West Flanders, and in the north of the provinces of Antwerp and Limburg, where especially NHx depositions amount to high values. Data needed for the calculation of critical loads are still sparse in Flanders, e.g. for: (1) weathering rates of soil minerals; (2) interception and evaporation of forest ecosystems; and (3) uptake of N and basic cations by vegetation. This supplementary information will contribute to a further refining of the calculated critical loads, which constitute indispensable information in developing an emission abatement policy.  相似文献   

3.
Critical loads are the basis for policies controlling emissions of acidic substances in Europe and elsewhere. They are assessed by several elaborate and ingenious models, each of which requires many parameters, and have to be applied on a spatially-distributed basis. Often the values of the input parameters are poorly known, calling into question the validity of the calculated critical loads. This paper attempts to quantify the uncertainty in the critical loads due to this "parameter uncertainty", using examples from the UK. Models used for calculating critical loads for deposition of acidity and nitrogen in forest and heathland ecosystems were tested at four contrasting sites. Uncertainty was assessed by Monte Carlo methods. Each input parameter or variable was assigned a value, range and distribution in an objective a fashion as possible. Each model was run 5000 times at each site using parameters sampled from these input distributions. Output distributions of various critical load parameters were calculated. The results were surprising. Confidence limits of the calculated critical loads were typically considerably narrower than those of most of the input parameters. This may be due to a "compensation of errors" mechanism. The range of possible critical load values at a given site is however rather wide, and the tails of the distributions are typically long. The deposition reductions required for a high level of confidence that the critical load is not exceeded are thus likely to be large. The implication for pollutant regulation is that requiring a high probability of non-exceedance is likely to carry high costs. The relative contribution of the input variables to critical load uncertainty varied from site to site: any input variable could be important, and thus it was not possible to identify variables as likely targets for research into narrowing uncertainties. Sites where a number of good measurements of input parameters were available had lower uncertainties, so use of in situ measurement could be a valuable way of reducing critical load uncertainty at particularly valuable or disputed sites. From a restricted number of samples, uncertainties in heathland critical loads appear comparable to those of coniferous forest, and nutrient nitrogen critical loads to those of acidity. It was important to include correlations between input variables in the Monte Carlo analysis, but choice of statistical distribution type was of lesser importance. Overall, the analysis provided objective support for the continued use of critical loads in policy development.  相似文献   

4.
The empirical and mass balance approaches to setting critical loads of acidity for mineral soils have been evaluated using field data from forest sites in Wales. Using the Simple Mass Balance Equation (SMBE) with Sitka spruce as the biological target, critical loads ranged between 2.3 and 9.8 keq H+ ha(-1) year(-1) compared to mapped empirical critical loads which ranged between 0.2 and 0.5 keq H+ ha(-1) year(-1). At all sites the empirical critical load was exceeded with respect to deposited sulfur acidity. There were no exceeded sites for the SMBE critical loads. The big differences between the two methods arise from the large ANC leaching term in the SMBE model which is determined by the relatively low (Ca + Mg + K)/Al(crit) ratio for Sitka spruce, compared to other conifers, and the influence of the large deposition of sea salt base cations. The low value of the (Ca + Mg + K)/Al(crit) ratio for Sitka spruce implies that it is tolerant of very acidic soil conditions, however, the ratio is based on the results of only one solution culture study and may thus be uncertain under field conditions. Large sea salt base cation deposition directly influences SMBE critical loads because the predicted soil water base cation concentrations permit large concentrations of hydrogen ions and aluminium (low ANC values) before the critical chemical limit is transgressed. Where weathering rates are low, critical ANC leaching (ANC(lecrit)) becomes the dominant term in the SMBE, with the counter intuitive result that the critical load becomes a linear function of sea salt base cation deposition. Thus the current formulation of the SMBE may not be appropriate for low weathering rate areas receiving large amounts of sea salt base cation deposition.  相似文献   

5.
Although decades of severe acid deposition have not resulted in serious surface water acidification in China, at present, the risk of some freshwaters becoming acidified cannot be neglected. To know more clearly about the possible impact acid deposition would have on Chinese surface waters, it is necessary to study the sensitivity of those surface waters to acidification and their critical loads of acid deposition on a national scale. Here we assess the acidification sensitivity of Chinese surface waters using an approach based on geology, soils, land use and hydrological conditions. Critical loads of S, N and acidity were also evaluated by a first-order acidity balance (FAB) model. Results show that most surface waters in China have very high critical loads of S and acidity and are not susceptible to acidification. Surface waters can be divided into three groups according to both sensitivity classes and critical loads. The few most sensitive surface waters are located in the northern part of Daxinganling region, with critical loads of S deposition and acidity lower than 2 keq ha(-1) year(-1). Surface waters in the northeastern region draining dark brown forest soils and in southern China belong to the second class of acidification sensitivity and their critical loads of S and acidity are generally between 2 and 15 keq ha(-1) year(-1), indicating they are not likely to be acidified under any flow conditions. Surface waters in other parts of China will not be acidified to any degree, with critical loads much higher than 15 keq ha(-1) year(-1). The magnitude and spatial distribution pattern of acidification sensitivity have significant similarity to the critical loads of S and acidity for Chinese surface waters. Although most surface waters are not likely to be acidified, attention should still be paid to the possible adverse impact acid deposition would have, especially in northeastern China, where the surface waters are the most sensitive, and the southern region, where acid pollution is among the most severe in China.  相似文献   

6.
This study was carried out to determine total Hg concentrations (HgT) in acid soils and main plant species in forest ecosystems located in the river Sor catchment, which is located 20 km to the NE of the biggest coal-fired power-plant in southwestern Europe (Galicia, NW Spain). Mercury enrichment factors and Hg inventories were also determined in the soils, which were regularly sampled between 1992 and 2001. The presence of elemental Hg was estimated by simple thermal desorption at 105 degrees C. The highest HgT concentrations occurred in upper soil layers (O and A horizons) with values up to 300 ng g(-1). HgT decreased with depth, achieving the lowest values in the bottommost horizons (i.e. the soil parent material, <6 ng g(-1)), except in podzolic soils. A similar trend occurred for Hg enrichment factors (HgEF) which showed values from 40 to 76 in topsoils. Upper soil mineral horizons (A or AB) made the largest contribution (>50%) to the HgT inventory despite showing lower concentrations than the organic horizons. The role of vegetation in capturing atmospheric Hg and subsequent deposition to soil agrees with the sequence of HgT in plant material: wood相似文献   

7.
Target loads for acid deposition in the Netherlands, as formulated in the Dutch environmental policy plan, are based on critical load calculations at the end of the 1980s. Since then knowledge on the effect of acid deposition on terrestrial ecosystems has substantially increased. In the early 1990s a simple mass balance model was developed to calculate critical loads. This model was evaluated and the methods were adapted to represent the current knowledge. The main changes in the model are the use of actual empirical relationships between Al and H concentrations in the soil solution, the addition of a constant base saturation as a second criterion for soil quality and the use of tree species-dependant critical Al/base cation (BC) ratios for Dutch circumstances. The changes in the model parameterisation and in the Al/BC criteria led to considerably (50%) higher critical loads for root damage. The addition of a second criterion in the critical load calculations for soil quality caused a decrease in the critical loads for soils with a median to high base saturation such as loess and clay soils. The adaptation hardly effected the median critical load for soil quality in the Netherlands, since only 15% of the Dutch forests occur on these soils. On a regional scale, however, critical loads were (much) lower in areas where those soils are located.  相似文献   

8.
Dissolved organic matter in soils can be predicted from forest floor C:N ratio, which in turn is related to foliar chemistry. Little is known about the linkages between foliar constituents such as chlorophylls, lignin, and cellulose and the concentrations of water-extractable forest floor dissolved organic carbon and dissolved organic nitrogen. Lignin and cellulose are not mobile in foliage and thus may be indicative of growing conditions during prior years, while chlorophylls respond more rapidly to the current physiological status of a tree and reflect nutrient availability. The aim of this study was to examine potential links among spectral foliar data, and the organic C and N of forest soils. Two coniferous species (red spruce and balsam fir) were studied in the White Mountains of New Hampshire, USA. Six trees of each species were sampled at 5 watersheds (2 in the Hubbard Brook Experimental Forest, 3 in the Bartlett Experimental Forest). We hypothesized that in a coniferous forest, chemistry of old foliage would better predict the chemical composition of the forest floor litter layer than younger foliage, which is the more physiologically active and the most likely to be captured by remote sensing of the canopy. Contrary to our expectations, chlorophyll concentration of young needles proved to be most tightly linked to soil properties, in particular water-extractable dissolved organic carbon. Spectral indices related to the chlorophyll content of needles could be used to predict variation in forest floor dissolved organic carbon and dissolved organic nitrogen. Strong correlations were found between optical spectral indices based on chlorophyll absorption and forest floor dissolved organic carbon, with higher foliage chlorophyll content corresponding to lower forest floor dissolved organic carbon. The mechanisms behind these correlations are uncertain and need further investigation. However, the direction of the linkage from soil to tree via nutrient availability is hypothesized based on negative correlations found between foliar N and forest floor dissolved organic carbon.  相似文献   

9.
Mercury (Hg) is regarded as a major environmental concern in many regions, traditionally because of high concentrations in freshwater fish, and now also because of potential toxic effects on soil microflora. The predominant source of Hg in most watersheds is atmospheric deposition, which has increased 2- to >20-fold over the past centuries. A promising approach for supporting current European efforts to limit transboundary air pollution is the development of emission-exposure-effect relationships, with the aim of determining the critical level of atmospheric pollution (CLAP, cf. critical load) causing harm or concern in sensitive elements of the environment. This requires a quantification of slow ecosystem dynamics from short-term collections of data. Aiming at an operational tool for assessing the past and future metal contamination of terrestrial and aquatic ecosystems, we present a simple and flexible modelling concept, including ways of minimizing requirements for computation and data collection, focusing on the exposure of biota in forest soils and lakes to Hg. Issues related to the complexity of Hg biogeochemistry are addressed by (1) a model design that allows independent validation of each model unit with readily available data, (2) a process- and scale-independent model formulation based on concentration ratios and transfer factors without requiring loads and mass balance, and (3) an equilibration concept that accounts for relevant dynamics in ecosystems without long-term data collection or advanced calculations. Based on data accumulated in Sweden over the past decades, we present a model to determine the CLAP-Hg from standardized values of region- or site-specific synoptic concentrations in four key matrices of boreal watersheds: precipitation (atmospheric source), large lacustrine fish (aquatic receptor and vector), organic soil layers (terrestrial receptor proxy and temporary reservoir), as well as new and old lake sediments (archives of response dynamics). Key dynamics in watersheds are accounted for by quantifying current states of equilibration in both soils and lakes based on comparison of contamination factors in sediment cores. Future steady-state concentrations in soils and fish in single watersheds or entire regions are then determined by corresponding projection of survey data. A regional-scale application to southern Sweden suggests that the response of environmental Hg levels to changes in atmospheric Hg pollution is delayed by centuries and initially not proportional among receptors (atmosphere > soils not equal sediments>fish; clearwater lakes > humic lakes). This has implications for the interpretation of common survey data as well as for the implementation of pollution control strategies. Near Hg emission sources, the pollution of organic soils and clearwater lakes deserves attention. Critical receptors, however, even in remote areas, are humic waters, in which biotic Hg levels are naturally high, most likely to increase further, and at high long-term risk of exceeding the current levels of concern: 相似文献   

10.
The terrestrial export of dissolved organic matter (DOM) is associated with climate, vegetation and land use, and thus is under the influence of climatic variability and human interference with terrestrial ecosystems, their soils and hydrological cycles. We present a data-set including catchments from four areas covering the major climate and land use gradients within Europe: a forested boreal zone (Finland), a temperate agricultural area (Denmark), a wet and temperate mountain region in Wales, and a warm Mediterranean catchment draining into the Gulf of Lyon. In all study areas, DOC (dissolved organic carbon) was a major fraction of DOM, with much lower proportions of DON (dissolved organic nitrogen) and DOP (dissolved organic phosphorus). A south-north gradient with highest DOC concentrations and export in the northernmost catchments was recorded: DOC concentrations and loads were highest in Finland and lowest in France. These relationships indicate that DOC concentrations/export are controlled by several factors including wetland and forest cover, precipitation and hydrological processes. DON concentrations and loads were highest in the Danish catchments and lowest in the French catchments. In Wales and Finland, DON concentrations increased with the increasing proportion of agricultural land in the catchment, whereas in Denmark and France no such relationship was found. DOP concentrations and loads were low compared to DOC and DON. The highest DOP concentrations and loads were recorded in catchments with a high extent of agricultural land, large urban areas or a high population density, reflecting the influence of human impact on DOP loads.  相似文献   

11.
Mobile arsenic species in unpolluted and polluted soils   总被引:1,自引:0,他引:1  
The fate and behaviour of total arsenic (As) and of As species in soils is of concern for the quality of drinking water. To estimate the relevance of organic As species and the mobility of different As species, we evaluated the vertical distribution of organic and inorganic As species in two uncontaminated and two contaminated upland soils. Dimethylarsinic acid (up to 6 ng As g(-1)), trimethylarsine oxide (up to 1.5 ng As g(-1)), 4 unidentified organic As species (up to 3 ng As g(-1)) and arsenobetaine (up to 15 ng As g(-1)), were detected in the forest soils. Arsenobetaine was the dominant organic As species in both unpolluted and polluted forest soils. No organic As species were detected in the contaminated grassland soil. The organic As species may account for up to 30% of the mobile fraction in the unpolluted forest floor, but never exceed 9% in the unpolluted mineral soil. Highest concentrations of organic As species were found in the forest floors. The concentrations of extractable arsenite were highest in the surface horizons of all soils and may represent up to 36% of total extractable As. The concentrations of extractable arsenate were also highest in the Oa layers in the forest soils and decreased steeply in the mineral soil. In conclusion, the investigated forest soils contain a number of organic As species. The organic As species in forest soils seem to result from throughfall and litterfall and are retained mostly in the forest floor. The relative high concentrations of extractable arsenite, one of the most toxic As species, and arsenate in the forest floor point to the risk of their transfer to surface water by superficial flow under heavy rain events.  相似文献   

12.
Buffering of recovery from acidification by organic acids   总被引:1,自引:0,他引:1  
In the United Kingdom, as in other regions of Europe and North America, recent decreases in surface water sulphate concentrations, due to reduced sulphur emissions, have coincided with marked increases in dissolved organic carbon (DOC) concentrations. Since many of the compounds comprising DOC are acidic, the resulting increases in organic acidity may have the potential to offset the benefits of a decrease in mineral (sulphate) acidity. To test this, we used a triprotic model of organic acid dissociation to estimate the proportional organic acid buffering of reduced mineral acidity as measured in the 22 lakes and streams monitored by the UK Acid Waters Monitoring Network. For an average non-marine sulphate decrease of 30 mueq l(-1) over 15 years from 1988-2003, we estimate that around 28% was counterbalanced by rising strong organic acids, 20% by rising alkalinity (partly attributable to an increase in weak organic acids), 11% by falling inorganic aluminium and 41% by falling non-marine base cations. The situation is complicated by a concurrent decrease in marine ion concentrations, and the impact this may have had on both DOC and acidity, but results clearly demonstrate that organic acid increases have substantially limited the amount of recovery from acidification (in terms of rising alkalinity and falling aluminium) that have resulted from reducing sulphur emissions. The consistency and magnitude of sulphate and organic acid changes are consistent with a causal link between the two, possibly due to the effects of changing acidity, ionic strength and aluminium concentrations on organic matter solubility. If this is the case, then organic acids can be considered effective but partial buffers to acidity change in organic soils, and this mechanism needs to be considered in assessing and modelling recovery from acidification, and in defining realistic reference conditions. However, large spatial variations in the relative magnitude of organic acid and sulphate changes, notably for low-deposition sites in northwestern areas where organic acid increases apparently exceed non-marine sulphate decreases, suggest that additional factors, such as changes in sea-salt deposition and climatic factors, may be required to explain the full magnitude of DOC increases in UK surface waters.  相似文献   

13.
An analysis of the uncertainties in critical loads and target loads of sulphur (S) and nitrogen (N) for 182 European forest soils was carried out using the Very Simple Dynamic (VSD) model. The VSD model was calibrated with a Bayesian approach using prior probability functions for model parameters based on literature data, data from 200 Dutch forest sites and from simulated denitrification rates from a detailed ecosystem model. The calibration strongly improved the fit of the model to observed soil and soil solution concentrations, especially for pH and base saturation. Calibration also narrowed down the ranges in input parameters. The uncertainty analysis showed which parameters contribute most to the uncertainty in the critical loads and target loads. Base cation weathering and deposition and the parameters describing the H-Al equilibrium in the soil solution determine the uncertainty in the maximum critical loads for S, CLmax(S), when based on the aluminium to base cation (Al/Bc) criterion. Uncertainty in CLmax(S) based on an acid neutralizing capacity (ANC) criterion is completely determined by base cation inputs alone. The denitrification fraction is the most important source of uncertainty for the maximum critical loads of N, CLmax(N). N uptake and N immobilisation determine the uncertainties in the critical load for N as a nutrient, CLnut(N). Calibration of VSD reduced the uncertainty: the coefficient of variation (CV) was reduced for all critical loads and criteria. After calibration, the CV for CLmax(S) was below 0.4 for almost all plots; however for CLmax(N) high values occurred for plots with high denitrification rates. Model calibration also improved the robustness of target load estimates: after calibration, no target loads were needed in any of the simulations for 40% of the plots, with the uncalibrated model there was a positive probability for the need of a target load for almost all plots.  相似文献   

14.
The role of organic and minerogenic acidity in controlling pH levels in Finnish rivers was studied by measuring total organic carbon (TOC) and non-marine sulphate (*SO(4)) concentrations in river water of the main river basins and their sub-basins. The basins are located along a latitudinal gradient (60 degrees N to 69 degrees N) and cover 297,322 km(2), 88% of the total area of Finland. The basins are predominately covered by coniferous forests and peatlands, and are located in areas with low sulphate deposition (80-430 mg S m(-2) a(-1)). The proportion of the basin covered by forests on mineral soils ranges from 29 to 64% and the proportion of peatlands from 3 to 60%. The percentage of peatland is highest in northern Finland (28-60%), whereas the proportion of forests on mineral soils increases towards the south. The majority of the agricultural land is located in southern and western Finland. *SO(4) concentrations were positively correlated with the proportion of agricultural land in the basin. Moreover, the percentage of peatlands had a positive correlation with the concentrations of TOC and organic anion. High peatland proportion and high TOC and organic anion concentrations decreased pH values in the river water, whereas no correlation between *SO(4) concentrations and pH was observed. The average organic anion concentration exceeded the average *SO(4) concentration in river water in 17 basins out of the 86 studied basins. The organic anion-dominated areas were situated in northern basins, reflecting the high extent of peatlands in these areas. *SO(4) dominated in southern Finland and in western coastal areas, where the extent of agricultural land, acid sulphate soils and the deposition of sulphate is highest.  相似文献   

15.
The aim of this work is to identify indicators of biological activity in soils from the Canary Islands, by studying the variation of selected biological parameters related to the processes of deforestation and accelerated soil degradation affecting the Canarian natural ecosystems. Ten plots with different degrees of maturity/degradation have been selected in three typical habitats in the Canary Islands: laurel forest, pine forest and xerophytic scrub with Andisols and Aridisols as the most common soils. The studied characteristics in each case include total organic carbon, field soil respiration, mineralized carbon after laboratory incubation, microbial biomass carbon, hot water-extractable carbon and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities. A Biological Quality Index (BQI) has been designed on the basis of a regression model using these variables, assuming that the total soil organic carbon content is quite stable in nearly mature ecosystems. Total carbon in mature ecosystems has been related to significant biological variables (hot water-extractable carbon, soil respiration and carboxymethylcellulase, beta-d-glucosidase and dehydrogenase activities), accounting for nearly 100% of the total variance by a multiple regression analysis. The index has been calculated as the ratio of the value calculated from the regression model and the actual measured value. The obtained results show that soils in nearly mature ecosystems have BQI values close to unit, whereas those in degraded ecosystems range between 0.24 and 0.97, depending on the degradation degree.  相似文献   

16.
Within an Austrian spruce stand, vertical distribution of radiocaesium in soil as well as 137Cs concentration in different forest ecosystem compartments including spruce and surface water were investigated 10 years after the Chernobyl accident. The total 137Cs inventory in the forest was estimated to be 46 kBq m-2 (ref. date: 86-05-01). From the collected data annual input rates via litterfall of 0.48% per year and output rates through waterflows of only 0.02% per year were derived. The results identify the high importance of forest soils as a sink for radiocaesium. The estimated ecological residence half-times turned out to be highest in the organic soil horizons (1-3 years per cm), whereas in mineral horizons the values decrease significantly. As a consequence, soil inventory represents more than 95% of the total, whereas only approximately 3.3% of the 137Cs inventory is stored in the living biomass of spruce trees and a further 0.5% in the phytomass of understorey vegetation.  相似文献   

17.
Mercury (Hg) and methylmercury (CH3Hg+) are global pollutants, but little information is available on rates of atmospheric input, distribution and mobility in soils and catchments of central Europe. The objectives of this study were to investigate input and output fluxes of these compounds in a deciduous and a coniferous catchment in NE Bavaria (Germany), and to estimate pools and mobility of total Hg (Hgtot) and CH3Hg+ at the catchment scale. Bulk precipitation, throughfall, litterfall and runoff were collected biweekly from April 1998 to April 1999. Several soil profiles were sampled to estimate pools of Hg compounds in the catchments. In both catchments highest contents of Hgtot were found in the Oa layer of the forest floor (up to 500 ng g(-1)) and the soil storage of Hgtot calculated for a soil depth of 60 cm was approximately 890 g ha(-1) in the coniferous and 190 g ha(-1) in the deciduous catchment. Highest contents of CH3Hg+ in upland soils were observed in the Oi layer of the forest floor, and soil storage of CH3Hg+ was 4.35 g ha(-1) in the coniferous and 0.59 g ha(-1) in the deciduous catchment. The annual total deposition of Hgtot (total deposition not measured directly but calculated from throughfall and litterfall) was 541 mg ha(-1) year(-1) in the coniferous and 618 mg ha(-1) year(-1) in the deciduous catchment. Total deposition rates of CH3Hg+ were 3.5 and 2.6 mg ha(-1) year(-1). The contribution of litterfall to the total deposition of Hgtot and CH3Hg+ was 55% in the deciduous catchment. In the coniferous catchment, the contribution of litterfall to total deposition was only 29% for Hgtot, but 55% for CH3Hg+. By far the largest proportion of the deposited CH3Hg+ and Hgtot remained in the catchments (85% in the coniferous, 95% in the deciduous). As compared to remote Swedish catchments, deposition and output via runoff of Hgtot, were higher, but deposition and output of CH3Hg+ were lower in our catchments. In contrast to other studies, the annual budget revealed no differences in the mobility between the two species at the catchment scale. However, temporal patterns of the runoff fluxes and converse gradients of CH3Hg+ and Hgtot contents in the forest floor indicated differences in mobility on shorter time scales.  相似文献   

18.
Vertical distribution of eleven hydrolytic enzyme activities were investigated with fluorogenic model substrates in boreal rural lake sediments, Lake Uurainen (13 km(2)), Lake J?mij?rvi (9 km(2)) and Lake Pyylampi (0.068 km(2)), in Finland. The eleven hydrolytic enzyme activities were high into deep sediment layers indicating potential for turnover of organic matter in the permanently anoxic zones. The activities of beta-glucosidase, sulphatase and N-acetyl-glucosaminidase were similar in the three lakes independent on the ecological status of the lake. Acetate- and butyrate-esterase were more active than the other enzymes in the three lakes. These unspecific esterases had sediment activities in forest Lake Pyylampi close to those reported for boreal coniferous forest soils in Finland. Similar beta-cellobiosidase activities throughout the sediment depths indicated constant depolymerisation potential for cellulose.  相似文献   

19.
A simple soil acidification model was applied to evaluate the effects of sulphur and nitrogen emission reductions on the recovery of acidified European forest soils. In addition we included the effects of climate change on soil solution chemistry, by modelling temperature effects on soil chemical processes and including temperature and precipitation effects on nitrogen uptake and on leaching. Model results showed a strong effect of the emission reduction scenarios on soil solution chemistry. Using the Current Legislation (CLE) scenario, the forest area in Europe with soil solution Al/Bc >1 mol mol− 1 (a widely used critical limit) decreased from about 4% in 1990 to about 1.7% in 2050. Under Maximum Feasible Reductions (MFR), the exceeded area will be < 1% in 2050. In addition, the area where limits for the nitrate concentration in soils are violated is predicted to be smaller under MFR than under CLE. Using the most stringent criterion for nitrate ([NO3] <0.3 mg l− 1), the area with nitrate concentrations in excess of the critical limit is about 33% in 2050 under CLE, but only 12% under MFR. Recovery, i.e. attaining non-violation of the criterion, is also much faster under MFR than under CLE. Climate change leads to higher weathering rates and nitrogen uptake in the model, but positive effects on recovery from acidification are limited compared to current climate, and differences between the A1 and B2 climate change scenarios were small. Target loads for 2050 exist for 4% of the area for Al/Bc = 1 and for 12% of the area when using a criterion of ANC = 0 for the soil solution. In about 30% of the area where meaningful target loads exists, the computed target load is lower than the deposition under MFR, and thus cannot be attained with current emission abatement technologies.  相似文献   

20.
C. Steinberg 《Water research》1991,25(12):1453-1458
In Groβer Arbersee, a cirque lake in the Bavarian Forest (Germany), the acidification chronology since the late-glacial period has been studied paleolimnologically, applying subfossil diatom assemblages. Distinct phases of acidification could be detected, both natural ones by post-glacial development of soils and vegetation in the catchment and anthropogenic ones by mineral acid depositions. Whereas the first phases were accompanied (and most probably caused as well) by increases in organic carbon contents, the recent phases are characterized by losses of organic carbon contents in the lake.

In various sensitive lakes in Central Europe the fate of organic carbon (measured as loss on ignition) is documented for the anthropogenic acidification period. In lowland as well as in high alpine lakes this process is accompanied by loss of organic carbon. These losses are by no means uniform. On the contrary, they range between 10 and 90% per drop of one pH-unit, in each lake calculated from estimated preacidification pH-conditions.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号