首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Removal of border cells from pea roots synchronizes and induces root cap cell division, wall biogenesis and differentiation. Three messages which are expressed differentially in such induced root caps have been cloned. Sequence analyses showed that the PsHRGP1-encoded protein has high homology with a homology with a hydroxyproline-rich glycoprotein. The PsCaP23-encoded protein has high homology with an alfalfa callus protein or translationally controlled human or mouse tumor protein P23. The PsRbL41-encoded protein has high homology with a highly basic 60S ribosomal protein L41. In situ hybridization showed that PsHRGP1. PsCaP23 and PsRbL41 messages are localized within dividing cells of the root cap. PsHRGP1 is highly expressed in uninduced root caps, but its message is repressed by 10-11 times as soon as cell division and differentiation begin. Expression of PsHRGP1 recovers to higher than (180%) its initial level in 30 min. PsHRGP1 is root-specific. PsCaP23 and PsRbL41 messages increase ca. 3-fold within 15 min after root cap induction. All three genes represent small families of 3-5 closely related genes in the pea genome.  相似文献   

2.
The tyrosine kinase TrkB is a receptor for the neurotrophic factors brain-derived neurotrophic factor (BDNF) and neurotrophin-4 (NT-4). Retinal ganglion cells are responsive to BDNF, and TrkB has been localized in ganglion cells as well as in a subpopulation of amacrine cells in the retina of the chicken and the rat. In the present paper, we analyzed the distribution of TrkB immunoreactivity in the retina of marmoset monkeys, ferrets, rabbits, rats, mice, chickens, pigeons, barn owls, Pseudemys turtles, Xenopus frogs, goldfishes, and carps. TrkB antibodies gave a positive reaction in all of these vertebrates. TrkB immunoreactivity was detected in the majority of retinal ganglion cells. Some amacrine cells also contained TrkB immunoreactivity; they were located mainly at the vitreal border of the inner nuclear layer, and their relative abundance varied in the different species. Until now, no information has been available concerning the neurochemical identity of the amacrine neurons containing TrkB. In some species (marmoset monkeys, rats, pigeons), we observed that the morphology and location of TrkB-immunoreactive amacrine cells was reminiscent of that of the well-described dopaminergic cells. To determine whether dopaminergic amacrine cells contained TrkB immunoreactivity, we therefore performed double-labelling immunohistochemistry by using tyrosine hydroxylase (TH) antibodies in combination with TrkB antibodies in marmoset monkeys, rats, pigeons, Pseudemys turtles, and goldfishes. The most novel finding of the present paper is that, in all of these species, the majority of dopaminergic neurons were found to contain TrkB immunoreactivity. Dopaminergic neurons, on the other hand, represented only a fraction of the TrkB+ amacrine cells. Our data suggest that BDNF and/or NT-4 might modulate expression of TH in the retina and may therefore influence the retinal dopaminergic system. Whatever the action of TrkB ligands on the retinal dopaminergic system, it was conserved during vertebrate evolution.  相似文献   

3.
We have investigated the expression of cyclins, cyclin dependent kinases (CDK), and CDK inhibitors (CKI) at the mRNA level in a panel of small-cell lung cancer (SCLC) cell lines in vitro and in vivo as xenografts in nude mice. The results showed that the cell lines expressed varying amounts of most cyclin and CDK's but only a few of the cell lines expressed cyclin D1 and/or D2 and some lacked expression of CDK6. Most cell lines expressed mRNA for the CKI's but two cell lines lacked expression of P15INK4B and p16INK4A. The mRNA expression differed for a few of the cell lines regarding cyclin D2 and CDK6 when in vitro and in vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether they will join the majority of cell lines with deregulated Rb pathway.  相似文献   

4.
Fas ligand (FasL) triggers apoptosis during cytotoxicity mediated by cytotoxic T lymphocytes and during immune downregulation. The ability of T cells and natural killer cells to trigger apoptosis through this mechanism is controlled by the cell surface expression of FasL (ref. 2). Because FasL expression is up-regulated on activation, FasL was thought to be delivered directly to the cell surface. Here we show that newly synthesized FasL is stored in specialized secretory lysosomes in both CD4+ and CD8+ T cells and natural killer cells, and that polarized degranulation controls the delivery of FasL to the cell surface. In this way, FasL-mediated apoptosis is finely controlled by receptor-mediated target-cell recognition. The cytoplasmic tail of FasL contains signals that sort FasL to secretory lysosomes in hemopoietic cells. This pathway may provide a general mechanism for controlling the cell surface appearance of proteins involved in immune regulation.  相似文献   

5.
6.
Apoptotic cell death induced by cross-linking Fas receptor (FasR/CD95) has been investigated in human acute myelogenous leukemia (AML) cells. FasR-mediated growth inhibition and DNA fragmentation could be induced in certain cases of AML. Interestingly, when DNA synthesis and G1 -> S transition in the cell cycle were enhanced by interleukin-3 or granulocyte-macrophage colony-stimulating factor, Fas-insensitive blast cells acquired cellular susceptibility toward FasR-mediated growth inhibition. To further evaluate an association between the Fas-R-mediated action and a specific phase of the cell cycle, a FasR+ leukemic cell line, MML-1, was established from a patient with AML. The morphologic feature of dying cells and DNA fragmentation indicated that FasR cross-linking induced apoptotic cell death in MML-1 cells. Cell cycle arrest in G1A phase with the treatment of phorbol 12-myristate 13-acetate or thymidine rendered MML-1 cells resistant to FasR-mediated apoptosis without downregulation of surface FasR expression. However, S-phase arrest with 5-fluorouracil could neither enhance nor inhibit FasR-mediated apoptosis. Simultaneous DNA/RNA quantification analysis revealed the selective loss of cells in G1B compartment, accompanied by the increase of apoptotic nuclei in sub-G1 fraction. These findings suggested that FasR-mediated apoptotic signals could be transduced into cells in G1B compartment and G1A -> G1B transition might augment the induction of FasR-mediated apoptosis.  相似文献   

7.
8.
CD8+ T cells taken directly from mice expressing a Kb-specific T cell receptor (TCR) transgene expressed the transgenic TCR in a bimodal profile as detected by flow cytometric analysis using a clonotype-specific monoclonal antibody. Those cells expressing the lower density of the transgenic TCR expressed the transgenic beta chain and two different alpha chains on their surface. One alpha chain was the product of the alpha transgene, whereas the other was derived by endogenous rearrangement. This report provides the first demonstration that T cells isolated directly from mice may express two different TCR clonotypes on their surface. The potential consequences of this finding for studies using TCR transgenic mice and for the induction of autoimmunity are discussed.  相似文献   

9.
The subcellular distribution patterns of molecules involved in the process of antigen loading [HLA-DR, HLA-DM, and the cytoplasmic and luminal parts of the invariant chain (Ii, CD74)] were investigated in Langerhans cells (LC), both qualitatively and quantitatively. The analysis was performed by immunofluorescence labelling of acetone-fixed vertical cryostat sections from normal human skin specimens and subsequent examination using confocal laser scanning microscopy (CSLM). The intensity-modulated multiple-wavelength scanning (IMS) technique was used to enhance channel separation when scanning dual-labelled specimens. The mean (n = 9) relative epidermal volumes of reactivity were: HLA-DR 8%+/-3%, HLA-DM 6%+/-2%, luminal Ii 6%+/-2%, and cytoplasmic Ii 4%+/-1%. The difference between HLA-DR and the other epitopes was significant at the P<0.001 level. All molecule combinations, except the combination of HLA-DM and luminal Ii (which was not studied), were to various extents colocalized. Experiments performed on unfixed epidermal sheets showed that HLA-DM is present on the cell surface of LC, suggesting that HLA-DM may interact with HLA-DR on the surface to induce peptide loading.  相似文献   

10.
Amplification and overexpression of the c-myc gene are common in primary human breast cancers and have been correlated with highly proliferative tumors. Components of the epidermal growth factor (EGF) receptor signaling pathway are also often overexpressed and/or activated in human breast tumors, and transgenic mouse models have demonstrated that c-myc and transforming growth factor alpha (a member of the EGF family) strongly synergize to induce mammary tumors. These bitransgenic mammary tumors exhibit a higher proliferation rate than do tumors arising in single transgenics. We, therefore, chose to investigate EGF-dependent cell cycle progression in mouse and human mammary epithelial cells with constitutive c-myc expression. In both species, c-myc overexpression decreased the doubling time of mammary epithelial cells by approximately 6 h, compared to parental lines. The faster growth rate was not due to increased sensitivity to EGF but rather to a shortening of the G1 phase of the cell cycle following EGF-induced proliferation. In cells with exogenous c-myc expression, retinoblastoma (Rb) was constitutively hyperphosphorylated, regardless of whether the cells were growth-arrested by EGF withdrawal or were traversing the cell cycle following EGF stimulation. In contrast, the parental cells exhibited a typical Rb phosphorylation shift during G1 progression in response to EGF. The abnormal phosphorylation status of Rb in c-myc-overexpressing cells was associated with premature activation of cdk2 kinase activity, reduced p27 expression, and early onset of cyclin E expression. These results provide one explanation for the strong tumorigenic synergism between deregulated c-myc expression and EGF receptor signal transduction in the mammary tissue of transgenic mice. In addition, they suggest a possible tumorigenic mechanism for c-myc deregulation in human breast cancer.  相似文献   

11.
12.
The extracellular calcium (Ca2+o)-sensing receptor (CaR) is a G protein-coupled receptor that plays important roles in calcium homeostasis. In this study, we employed epitope tagging, cell-surface biotinylation, and immunoprecipitation techniques to demonstrate that the CaR is expressed mostly in the form of a dimer on the surface of transfected human embryonic kidney (HEK293) cells. Western analysis of cell-surface proteins under nonreducing conditions showed that the CaR exists in several forms with molecular masses greater than 200 kDa. Most of these high molecular mass forms of the receptor could be converted to a single monomeric species at 160 kDa under reducing conditions. This result suggests that the CaR forms dimers or even higher oligomers on the cell surface through intermolecular disulfide bonds that are sensitive to reducing agents. Consistent with this hypothesis, use of a cell-surface cross-linking agent substantially increases the proportion of the putative dimeric CaR at 280 kDa relative to the monomeric form of the receptor at 160 kDa under reducing conditions. Dimerization of the CaR in intact cells was further demonstrated when we co-transfected and co-immunoprecipitated the wild type, full-length receptor and a truncated form of the CaR lacking its cytoplasmic tail. Taken together, we conclude from these results that the functional CaR resides on the cell surface of transfected HEK293 cells in the form of a dimer.  相似文献   

13.
Using the arbitrarily primed-PCR (AP-PCR) assay to detect genetic abnormalities that occur in a panel of lymphoid cell lines, we identified an amplified stretch of genomic DNA that contained a putative open reading frame. Northern blot analysis with this genomic clone revealed widespread low level expression in normal human tissue. The full cDNA sequence was obtained with no significant homology to any known genes in the genome database. We termed this novel gene with multiple copies in a T-cell malignancy as MCT-1. MCT-1 was localized to the long arm of chromosome Xq22-24 by flourescence in situ hybridization analysis. Although there was no significant homology at the primary sequence level, there was a limited degree of amino acid homology with a domain of cyclin H that appears to specify protein-protein complexes. This relationship between MCT-1 and cyclin H implied a potential role for MCT-1 in cell cycle regulation. Overexpression of MCT-1 increased the proliferative rate of cells by decreasing the length of the G1 phase without a reciprocal increase in the S and G2-M phases. Recent work has established the role of cell cycle regulatory molecules in the development of certain human malignancies. Therefore, we investigated the transforming ability of MCT-1 overexpression using soft agar growth assays and demonstrated that only MCT-1-overexpressing cells were able to establish colonies. Taken together, MCT-1 is a novel candidate oncogene with homology to a protein-protein binding domain of cyclin H.  相似文献   

14.
We previously reported the immunopurification of a somatostatin receptor from the human tumoral gastric cell HGT1 using the monoclonal antibody 30F3 (Reyl-Desmars, F., Le Roux, S., Linard, C., Benkouka, F., and Lewin, M. J. M. (1989) J. Biol. Chem. 264, 18789-18795). Screening of a lambda gt11 HGT1-cDNA library with 30F3 led us to isolate a cDNA encoding an 86-kDa polypeptide displaying 100% structural identity with the 86-kDa subunit (p86-Ku) of the Ku autoantigen. Recombinant p86 expressed in Escherichia coli cross-reacted with 30F3 and specifically bound [125I-Tyr11]somatstatin-14. Binding was totally displaced by somatostatin-14, somatostatin-28, and SMS 201-995, with IC50 values of 0.7, 1.0, and 1.2 nM, respectively. In a search for a biological effect associated with binding, we purified a 36-kDa, okadaic acid-sensitive phosphatase (protein phosphatase-2A (PP2A)) from rat gastric cytosol. PP2A catalyzed 32P release from p34cdc2-phosphorylated histone H1. However, PP2A-induced 32P release was concentration dependently inhibited by recombinant p86-Ku, with a decrease in maximal velocity without a change in Km. Steric exclusion high pressure chromatography indicated that the inhibition resulted from direct interaction of the enzyme with p86-Ku. Furthermore, it was antagonized by increased concentrations of somatostatin-14 and prevented by preincubating p86-Ku with 30F3. Given the key role played by PP2A in cell cycle regulation, the current findings suggest that p86-Ku could be a physiological target of somatostatin antiproliferative action.  相似文献   

15.
We have investigated the expression patterns and subcellular localization in nervous tissue of glypican, a major glycosylphosphatidylinositol-anchored heparan sulfate proteoglycan that is predominantly synthesized by neurons, and of biglycan, a small, leucine-rich chondroitin sulfate proteoglycan. By laser scanning confocal microscopy of rat central nervous tissue and C6 glioma cells, we found that a significant portion of the glypican and biglycan immunoreactivity colocalized with nuclear staining by propidium iodide and was also seen in isolated nuclei. In certain regions, staining was selective, insofar as glypican and biglycan immunoreactivity in the nucleus was seen predominantly in a subpopulation of large spinal cord neurons. The amino acid sequences of both proteoglycans contain potential nuclear localization signals, and these were demonstrated to be functional based on their ability to target beta-galactosidase fusion proteins to the nuclei of transfected 293 cells. Nuclear localization of glypican beta-galactosidase or Fc fusion proteins in transfected 293 cells and C6 glioma cells was greatly reduced or abolished after mutation of the basic amino acids or deletion of the sequence containing the nuclear localization signal, and no nuclear staining was seen in the case of heparan sulfate and chondroitin sulfate proteoglycans that do not possess a nuclear localization signal, such as syndecan-3 or decorin (which is closely related in structure to biglycan). Transfection of COS-1 cells with an epitope-tagged glypican cDNA demonstrated transport of the full-length proteoglycan to the nucleus, and there are also dynamic changes in the pattern of glypican immunoreactivity in the nucleus of C6 cells both during cell division and correlated with different phases of the cell cycle. Our data therefore suggest that in certain cells and central nervous system regions, glypican and biglycan may be involved in the regulation of cell division and survival by directly participating in nuclear processes.  相似文献   

16.
Using a monoclonal antibody (GHRP2-88) raised against the extracellular portion of human growth hormone receptor (hGHR), the mechanisms on modulations of cellular levels of hGHR were investigated in human IM-9 cells. Upon stimulation with human growth hormone (hGH), hGHRs on the cell surface are down-regulated through internalization and degradation of hGHR. For hGHR internalization, hGH-mediated dimerization of hGHRs, but not staurosporine-sensitive phosphorylation is required. For hGHR degradation, however, staurosporine-sensitive phosphorylation is necessary. In the absence of hGH, hGHRs on the cell surface are cleaved to release human growth hormone-binding proteins (hGH-BPs), probably by a metalloprotease. In the presence of hGH, the hGH-BP release was rather decreased based on the reduction in cell surface hGHRs. Thus, the cell surface level of hGHR may be regulated post-translationally by the two mechanisms depending on the external hGH levels.  相似文献   

17.
Hsp47 is a novel glycoprotein that binds specifically to procollagen and is retained in the ER by its COOH-terminus RDEL peptide sequence (Satoh, M. et al. Jol. Cell Biol. 1996; 133: 469-83). In this paper, we report that erd2P, the KDEL receptor, is distributed, coprecipitates with, and binds to Hsp47. Also, under stress conditions and lowering of pHi, the cytoplasmic epitope of erd2P is not recognized by erd2P antibodies unless the cells are pretreated with NEM. Coincident with the masking of the cytoplasmic epitope of erd2P, following lowering of pHi, Hsp47 is not retained but eludes its retention receptor to be expressed on the cell surface. Alkalization of the endosomal compartments by treatment with NH4Cl or chloroquine also results in the loss of Hsp47 to the cell surface, presumably by inhibiting the retrieval of trans-Golgi network proteins from the cell surface. The expression of Hsp47 on the cell surface under conditions of stress and alteration of pHi and pHe posture Hsp47 as a serpin family protein that may modulate cell migration during development and invasion and metastasis in cancer.  相似文献   

18.
Esophageal adenocarcinoma (SKGT-2, SKGT-4, and SKGT-5) and epidermoid carcinoma (HCE-4) cells containing variable retinoblastoma (Rb), cyclin D1, p16, and p53 expression patterns were exposed to the synthetic flavone, flavopiridol. The IC50 was approximately 100-150 nM for each of these cell lines. Exposure of esophageal carcinoma cells to 300 nM flavopiridol induced cell cycle arrest and apoptosis, resulting in a 90% inhibition of proliferation relative to that of nontreated cells after a 5-day exposure to the drug. Western blot analysis revealed diminution of cyclin D1, Rb, and p107 protein levels after flavopiridol exposure. Whereas cell cycle arrest and overall growth inhibition did not correlate in any obvious manner with the genotype of these cell lines, apoptosis seemed to be more pronounced in SKGT-2 and SKGT-4 cells that lack Rb expression. Pretreatment of esophageal cancer cells with 9-cis-retinoic acid did not substantially potentiate flavopiridol activity in these cell lines. Although the precise mechanism of flavopiridol-mediated cytotoxicity has not been fully defined, this drug is an attractive agent for molecular intervention in esophageal cancers and their precursor lesions; further evaluation of flavopiridol in this clinical context is warranted.  相似文献   

19.
DNA damage leads to the stabilization of p53 protein and its translocation to the nucleus, resulting in activation or suppression of p53-responsive genes. However, a significant proportion of cell nuclei remain negative for p53 and p53-inducible cyclin-dependent kinase inhibitor p21waf1 after a single dose of gamma-irradiation. Quantitation of DNA content in p53-positive and -negative nuclei 4-6 h after 10 Gy of gamma-irradiation of human breast carcinoma MCF7 cells, fibrosarcoma HT1080 cells, and diploid skin fibroblasts showed that p53 and p21waf1 nuclear accumulation occurs predominantly in the G1 phase and at the beginning of the S phase of the cell cycle. The majority of the nuclei in late S phase and in G2-M phase remained p53- and p21waf1-negative. This suggests that there is a cell cycle window during which p53 can accumulate in the nucleus and activate expression of p21waf1. To determine whether cell cycle-dependent distribution of p53 is caused by cytoplasmic modifications of p53 protein or by properties of the nucleus, p53 localization was analyzed in multinucleated cells obtained by polyethylene glycol-mediated cell fusion. Dramatic differences in p53 accumulation were found among the nuclei in individual multinucleated cells. Distribution of p53-positive and -negative nuclei among the phases of the cell cycle was similar to that observed in a regular cell population. These results suggest that the observed differences in p53 accumulation in the nuclei of irradiated cells are determined by cell cycle-dependent nuclear functions. In contrast to p53, p21waf1 was equally distributed among the nuclei of multinucleated cells regardless of the stage of the cell cycle, indicating that the observed phenomenon is specific for p53.  相似文献   

20.
Alterations in thyroid function tests are very common in patients with NTI. Multiple, complex, and incompletely understood mechanisms are involved in these abnormalities. Knowledge of these abnormalities is necessary to avoid errors in the diagnosis of thyroid disease. Measurement of serum TSH, free T4, and free T3 levels by direct equilibrium dialysis/RIA methods probably yield most useful (accurate) information in the setting of NTI. Patients with low free T4 by these methods and normal or low TSH have secondary hypothyroidism. This may be due to NTI per se, drugs administered for treatment of NTI, or associated pituitary or hypothalamic disease; the latter consideration may require evaluation of cortisol reserve, PRL, and/or gonadotropins. A serum TSH level above 20-25 microU/mL probably reflects primary hypothyroidism; accompanying findings of goiter, low free T4, and positive antithyroid antibodies help establish the diagnosis. An elevated serum concentration of rT3 argues against hypothyroidism. Studies have demonstrated no discernible benefit of treatment of NTI patients with T4. Some studies have shown a few benefits of treatment with T3 in selected cases, but much more needs to be learned. There is no evidence of harm by treatment of NTI patients with up to replacement doses of T3. As some NTI patients may indeed be hypothyroid, the term ESS should be replaced with NTIS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号