首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Ischemic stress and other protein kinase C (PKC)-linked receptor stimuli can induce rapid cardiac protection against ischemia-reperfusion injury. We and others have demonstrated that exogenous calcium (Ca2+) pretreatment confers PKC-mediated cardiac functional and infarct protection in animal models, but it remains unknown whether Ca2+ preconditioning confers similar postischemic functional protection in human myocardium, and, if so, whether the mechanism is mediated by PKC. We postulated that Ca2+ preconditioning confers ischemic tolerance to human myocardium by a PKC-dependent mechanism. METHODS: Human atrial trabeculae were suspended in organ baths and paced at 1 Hz, and force development was recorded. After 90 minutes of equilibration, all trabeculae were subjected to ischemia (45 minutes) and reperfusion (120 minutes). Exogenous CaCl2 (3.0 mmol/L for 5 minutes) or vehicle (saline solution) was administered before simulated ischemia, with or without concurrent PKC inhibition (bisindolylmaleimide I, 150 nmol/L). RESULTS: Ischemia-reperfusion resulted in decreased postischemic developed force, Ca2+ preconditioning protected human myocardium against ischemia-reperfusion injury (p < 0.05 versus control ischemia-reperfusion), and concurrent PKC inhibition abolished the salutary effect of Ca2+ preconditioning in human myocardium (p < 0.05 versus Ca2+ preconditioning). CONCLUSIONS: Preconditioning with Ca2+ represents a potent means of accessing PKC-mediated protection of the human myocardium against ischemia-reperfusion injury.  相似文献   

2.
Thoracic gas volume (TGV) and airway conductance (Gaw) were measured in 69 healthy infants during the 1st yr of life, using an adaptation of the whole body plethysmographic technique in which a heated rebreathing system was used to eliminate temperature differences in respired gas. There was highly significant correlations between TGV and body wt (r=0.99), and between Gaw and TGV (r=0.97) in all the infants. However, the relationship between Gaw and TGV (i.e., specific conductance (SGaw)) was dependent on postconceptional age (PCA) in preterm infants, falling from 0.50 s-1-cmH2O-1 at 31 wk to 0.32 s-1-cmH2O-1 at 40 wk PCA. Gestational age and postnatal age per se did not affect this relationship, showing it to be a maturational event unaffected by the time of birth. After 40 wk, the decrease in SGaw was far more gradual throughout the 1st yr of life. Black and Chinese infants were found to have significantly higher values for SGaw than their White counterparts, which may be due to anatomical differences in nasal structure.  相似文献   

3.
A study of 18 standard avian mycoplasma and their antisera employing indirect haemagglutination test revealed distinct relationships among avian mycoplasma serotypes, so that they could be classified into 9 groups.  相似文献   

4.
The Ca2+ concentration within the myocyte is an important determinant of myocardial contractility. Substantial changes in the cellular processes responsible for transport of Ca2+ ions across the sarcolemmal and sarcoplasmic reticulum membranes occur during maturation of the heart. In this article, the mechanisms underlying these changes and their impact on myocardial performance are discussed in detail.  相似文献   

5.
1. In the neurogenic heart of the isopod Porcellio dilatatus, electrical stimulation of the cardio-regulatory nerves at rates greater than 20-25 pulses/s elicited inhibitory junctional potentials (IJPs) in the myocardium. Its cessation was followed by a long lasting hyperpolarization of myocardial membrane (post-stimulus hyperpolarization = PSH). 2. During the PSH the membrane resistance of the heart muscle increased. The PSH was enhanced by myocardium hyperpolarization, decreased by depolarization and reversed around -50 mV. 3. Picrotoxin inhibited the summated IJPs elicited by the stimulation and thus caused the membrane to maximally hyperpolarize during inhibitory train, thus suggesting a composite nature of the inhibitory processes. 4. The PSH was reversibly reduced in K+-free saline or in ouabain containing saline but partial restoration was obtained by injection of inward current to the myocardium. 5. The PSH was abolished in lithium saline and reduced in Na+-deficient (choline) solution. Cl-deficient solution that markedly affected the summated IJPs shortly after its introduction did not affect the PSH. 6. It is proposed that the PSH results from a decrease in conductance, presumably to both Na+ and K+. The implication of such a mechanism as a component of the inhibitory regulation of this crustacean heart is discussed.  相似文献   

6.
7.
Voltage-dependent K+ currents in pear-shaped hair cells of the frog crista ampullaris were investigated in thin slice preparations using the whole-cell variant of the patch-clamp technique. Microscopy observation revealed that pear-shaped cells are located in intermediate and peripheral regions of the crista, whereas they are absent in the central region. Voltage-clamp recordings in cells from the peripheral regions revealed that the total outward K+ current could be separated pharmacologically into three distinct components: a A-type K+ current (IA); an inactivating calcium-activated K+ current (IK(Ca)) and a delayed rectifier K+ current (IK). IK and IK(Ca) exhibited similar magnitude and accounted for most of the membrane cell conductance. The same experimental protocol applied to cells from the intermediate regions showed the presence of a large and sustained IK(Ca) which represented 95% of the total outward current. In this region IA was absent. The present results demonstrated that pear-shaped hair cells located in two discrete regions of frog crista ampullaris exhibit a different complement of voltage-dependent conductances, suggesting that they can play a different role in processing the natural stimulus.  相似文献   

8.
9.
BACKGROUND: Pharmacologic treatment using potassium-channel openers (PCOs) before cardioplegic arrest has been demonstrated to provide beneficial effects on left ventricular performance with subsequent reperfusion and rewarming. However, the PCO treatment interval necessary to provide protective effects during cardioplegic arrest remains to be defined. The present study was designed to determine the optimum period of PCO treatment that would impart beneficial effects on left ventricular myocyte contractility after simulated cardioplegic arrest. METHODS: Left ventricular porcine myocytes were assigned randomly to three groups: (1) normothermic control = 37 degrees C for 2 hours; (2) cardioplegia = K+ (24 mEq/L) at 4 degrees C for 2 hours followed by reperfusion and rewarming; and (3) PCO and cardioplegia = 1 to 15 minutes of treatment with the PCO aprikalim (100 micromol/L) at 37 degrees C followed by hypothermic (4 degrees C) cardioplegic arrest and subsequent rewarming. Myocyte contractility was measured after rewarming by videomicroscopy. A minimum of 50 myocytes were examined at each treatment and time point. RESULTS: Myocyte velocity of shortening was reduced after cardioplegic arrest and rewarming compared with normothermic controls (63+/-3 microm/s versus 32+/-2 microm/s, respectively; p < 0.05). With 3 minutes of PCO treatment, myocyte velocity of shortening was improved after cardioplegic arrest to values similar to those of normothermic controls (56+/-3 microm/s). Potassium channel opener treatment for less than 3 minutes did not impart a protective effect, and the protective effect was not improved further with more prolonged periods of PCO treatment. CONCLUSIONS: A brief interval of PCO treatment produced beneficial effects on left ventricular myocyte contractile function in a simulated model of cardioplegic arrest and rewarming. These results suggest that a brief period of PCO treatment may provide a strategy for myocardial protection during prolonged cardioplegic arrest in the setting of cardiac operation.  相似文献   

10.
11.
The absorption of calcium corresponds to a strictly determined mechanism inhibited by phosphates and activited by carbohydrates. We investigate in what extent the absorption of milk calcium from various species has the same proceeding. 4 months old rats are given orally solutions of CaCl2 alone or in combination with sodium dihydrogen phosphate or lactose or these both compounds. We compare calcium absorption of these solutions to that of milk from woman, cow or sow, or to dilutions of these two latter milks. All these fluids are dosed so that they correspond each other by their respective content in total calcium, total phosphorus and lactose. Each solution contains 45Ca. Blood samples 1,30, 4, 6 and 24 hours after ingestion allow establishing the variations of plasma radioactivity. Rats are sacrified after 24 hours. In certain cases, samples from digestive tube contents and feces provide a coefficient of calcium absorption. The osseous retention is obtained from femur radioactivity. In breif, we may consider that milks from cow and sow provide calcium the absorption of which is settled after their respective content of total phosphorus and lactose. Opposed effects of these inhibitors and activators of calcium absorption compensate so that calcium from these milks is just a little better utilized by adult rat than calcium from an isocalcic solution of CaCl2. Calcium from woman milk, rich in carbohydrates, poor in total phosphorus is better absorbed than that from the two latters, however less than we might expect from its high lactose content. We may wonder that calcium utilization from cow milk is as moderate as that of a solution of CaCl2. But skeleton mineralization which may be fulfilled by milk is made better because of that: it is not chloride but calcium phosphate which ensures this mineralization, a phosphate which alone would impair this mineralization without the compensative role of lactose.  相似文献   

12.
Endothelin (ET) isopeptides, ET-1, ET-2 and ET-3, elicit a positive inotropic effect (PIE) in association with a negative lusitropic effect, essentially with identical efficacies and potencies in the isolated rabbit papillary muscle, but with different concentration-dependent properties. Pharmacological analysis indicates that the PIE of ET-1 is mediated by an ETA2 subtype that is less sensitive to BQ-123 and FR139317, whereas the PIE of ET-3 is mediated by an ETA1 subtype that is highly sensitive to these ETA antagonists. ETs increased the amplitude of intracellular Ca2+ transient (CaT) in indo-1 loaded rabbit ventricular myocytes, but the increase was much smaller than that produced by elevation of [Ca2+]o or isoproterenol for a given extent of PIE, an indication of increased myofibrillar Ca2+ sensitivity. ETs stimulate phosphoinositide (PI) hydrolysis, which leads to production of inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Evidence for the role of IP3-induced Ca2+ release in cardiac E-C coupling is tenuous. Generation of IP3 induced by ET-1 was transient and returned to the baseline level when the PIE reached an elevated steady level. Protein kinase C (PKC) that is activated by DAG and also via other pathways triggered by ETs stimulates Na+-H+ exchanger to lead to an increased [Na+]i and alkalinization. The former may contribute to an increase in the amplitude of CaT through Na+-Ca2+ exchanger, and the latter, to an increase in myofibrillar Ca2+ sensitivity. A number of PKC inhibitors, such as staurosporine, H-7, calphostin C and chelerythrine, consistently and selectively inhibited the PIE of ET-3 without affecting the PIE of isoproterenol and Bay k 8644. The maximum inhibition was 20-30% of the total response. A Na+-H+ exchange inhibitor, [5-(N-ethyl-N-isopropyl) amiloride (EIPA)] or a Ca2+ antagonist, verapamil, could not completely inhibit the PIE of ET-3, but the combination of both inhibitors totally abolished the PIE of ET-3. These findings indicate that activation of PKC and subsequent activation of Na+-H+ exchanger and/or L-type Ca2+ channels may play a crucial role in the cardiac action of ET isopeptides in the rabbit ventricular myocardium.  相似文献   

13.
The effects of the Anemonia sulcata toxin ATX II on action potentials and contractility of isolated papillary muscles and single myocytes from rat and guinea-pig hearts have been studied. ATX II prolonged the action potential in both rat and guinea-pig papillary muscle. Although it produced a positive inotropic effect in guinea-pig papillary muscle, it failed to do so in rat papillary muscle. However, in single rat and guinea-pig ventricular cells, it both prolonged the action potential and had a positive inotropic effect. We suggest that ATX II does not cause a positive inotropic effect in rat papillary muscle, because it induces Ca2+ overload. In single cells the positive inotropic effect was reduced by approximately 50% when the contractions were triggered by voltage clamp pulses of constant duration rather than by action potentials. This suggests that the inotropic effect of ATX II is in part the result of the prolongation of the action potential. The intracellular Na+ activity (a(i)Na) in single ventricular cells was measured with the Na(+)-sensitive fluorescent dye SBFI. After exposure of the cells to ATX II, a(i)Na was increased by a maximum of 1.9 +/- 0.3 and 2.2 +/- 0.3 mM in rat and guinea-pig cells, respectively. It is suggested that the positive inotropic effect of ATX II is also in part the result of the rise in a(i)Na.  相似文献   

14.
15.
The pattern of retinal vasculative is described and the position at which cell proliferation at the ventral retinal margin is maximal was shown to be at the point of entry of the ventral blood vessels. To test whether there is a causal relation between retinal blood supply and retinal cell production, surgical inversion of the eye, transplantations and excisions of retina were done to change the pattern of retinal vasculature. The growth pattern of inverted eyes was normal with respect to the internal axes of the eyes. After excision of part of the retina or after fusion of retinal fragments to form compound eyes, the pattern of retinal cell proliferation was not correlated with the distribution of retinal blood vessels, but was correlated with the position(s) of the choroidal fissure(s).  相似文献   

16.
A tentative model is presented which is based on existing data and our own cell kinetic and morphological observations in mice. The model suggests that the epidermal Langerhans cell plays a role in proliferation control of keratinocytes and may also act as an epidermal stem cell.  相似文献   

17.
18.
19.
The steady state relation between cytoplasmic Ca2+ concentration ([Ca2+]i) and force was studied in intact skeletal muscle fibers of frogs. Intact twitch fibers were injected with the dextran-conjugated Ca2+ indicator, fura dextran, and the fluorescence signals of fura dextran were converted to [Ca2+]i using calibration parameters previously estimated in permeabilized muscle fibers (Konishi and Watanabe. 1995. J. Gen. Physiol. 106:1123-1150). In the first series of experiments, [Ca2+]i and isometric force were simultaneously measured during high K+ depolarization. Slow changes in [Ca2+]i and force induced by 15-30 mM K+ appeared to be in equilibrium, as instantaneous [Ca2+]i versus force plot tracked the common path in the rising and relaxation phases of K+ contractures. In the second series of experiments, 2,5-di-tert-butylhydroquinone (TBQ), an inhibitor of the sarcoplasmic reticulum Ca2+ pump, was used to decrease the rate of decline of [Ca2+]i after tetanic stimulation. The decay time courses of both [Ca2+]i and force were dose-dependently slowed by TBQ up to 5 micro M; the instantaneous [Ca2+]i- force relations were nearly identical at >/=1 micro M TBQ, suggesting that the change in [Ca2+]i was slow enough to reach equilibrium with force. The [Ca2+]i-force data obtained from the two types of experiments were consistent with the Hill curve using a Hill coefficient of 3.2-3.9 and [Ca2+]i for half activation (Ca50) of 1.5-1.7 micro M. However, if fura dextran reacts with Ca2+ with a 2.5-fold greater Kd as previously estimated from the kinetic fitting (Konishi and Watanabe. 1995. J. Gen. Physiol. 106:1123-1150), Ca50 would be 3.7-4.2 micro M. We also studied the [Ca2+]-force relation in skinned fibers under similar experimental conditions. The average Hill coefficient and Ca50 were estimated to be 3.3 and 1.8 microM, respectively. Although uncertainties remain about the precise levels of [Ca2+]i, we conclude that the steady state force is a 3rd to 4th power function of [Ca2+]i, and Ca50 is in the low micromolar range in intact frog muscle fibers, which is in reasonable agreement with results obtained from skinned fibers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号