首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
微波烧结制备WC-12Co硬质合金   总被引:5,自引:2,他引:5  
以88%WC+12%Co混合料粉为原料,采用微波烧结制备WC-12Co硬质合金,研究烧结温度与保温时间对合金密度和硬度以及显微组织的影响。结果表明,在1400~1475℃范围内,随烧结温度升高,WC晶粒长大不明显,合金密度和硬度增大。在1475℃的烧结温度下保温0min,烧结周期1.5~2h,烧结合金的相对密度达99.8%,硬度为87.5HRA,烧结样品显微组织结构均匀,但保温时间超过30min后由于晶粒异常长大以及钴相分布不均匀,导致合金的密度和硬度急剧下降。采用辅助加热材料和保温材料以及设计合理的样品摆放,可降低样品中不同部位的温度梯度,从而获得形状良好的合金样品。  相似文献   

2.
微波多模腔快速烧结WC-8%Co硬质合金   总被引:4,自引:1,他引:4  
采用多模腔微波烧结工艺制备了WC-8%Co硬质合金,烧结周期为1~1.5h,研究了微波烧结工艺对合金组织结构与性能的影响。结果表明:微波烧结WC-8%Co硬质合金所需时间短,在1400℃的烧结温度下保温0min时密度就能达到14.71g/cm3,HRA可达90.3,烧结样品的显微组织结构均匀,样品中心和边缘区域WC晶粒尺寸分布一致,没有发现显著差异,随着烧结保温时间的增加和烧结温度的提高WC晶粒尺寸长大不明显。  相似文献   

3.
通过在混合料中增加炭黑和在填料中添加炭黑两种方法,来抑制微波烧结YG12硬质合金在微波烧结过程中出现的脱碳现象,从而提高微波烧结硬质合金的性能.结果表明:在混合料中添加炭黑可以抑制合金的脱碳行为,当炭黑添加量为0.4%(质量分数)时,合金的抗弯强度较理想,合金抗弯强度可达2 250 MPa;而通过在填料中添加炭黑有效抑...  相似文献   

4.
高能球磨和放电等离子体烧结制备超细WC-8Co硬质合金   总被引:2,自引:0,他引:2  
以0 .8 1μm的WC粉和1.3 5 μm的Co粉为原料,采用高能球磨制备了粉末比表面积为6.82m2 ·g- 1 ,粉末粒度为5 9.4nm的WC 8Co混合粉末。将此纳米粉末采用放电等离子体烧结(SPS)制备了WC晶粒度为0 .5~0 .6μm、硬度为HRA93 .5的超细硬质合金。研究了SPS烧结温度和添加晶粒抑制剂对显微组织与HRA硬度的影响。  相似文献   

5.
硬质合金的烧结气氛   总被引:2,自引:0,他引:2  
  相似文献   

6.
以平均粒径约300 nm的复合粉为原料,采用高温高压烧结法在不同烧结温度和保温时间下制备了 WC-6Co硬质合金.通过X射线衍射仪、光学显微镜和显微硬度计研究了制备工艺对WC-6Co硬质合金晶体结构、显微组织和力学性能的影响.结果表明:试样烧结过程液相Co的流动性、WC颗粒重排和晶粒尺寸对合金密度、维氏硬度和断裂韧性起...  相似文献   

7.
WC-Co硬质合金作为一种特殊的工具材料,其具备较强的性能,能妥善解决传统硬质合金硬度和强度间的问题,实现双高的局面,所以,被广泛应用在各行业中。但从目前硬质合金研究情况来看,研究人员通过各种方法来制作纳米WC-Co粉末,但在烧结制备纳米WC-Co硬质合金方面出现很多问题,主要原因是受到烧结技术水平的限制,现存烧结技术无法合理控制烧结中WC晶粒的增长。基于此,本文将WC粉和Co粉为原料粉末,添加适量的晶粒长大抑制剂,将其放在磨机中进行湿磨,再压成生坯,然后在微波环境下进行烧结,从而分析不同因素给烧结工艺参数带来的影响,如保温时间、脱蜡时间、烧结温度等因素。  相似文献   

8.
超细WC-Co硬质合金的微波烧结研究   总被引:2,自引:0,他引:2  
采用微波烧结工艺制备了WC-Co超细硬质合金,并研究了烧结工艺对烧结样品性能的影响。结果表明:微波烧结与真空烧结WC-Co超细硬质合金相比烧结温度更低,保温时间更短,在1300℃的烧结温度下瞬时保温(0min),密度就可达到14.27g/cm3,而且在烧结温度1350℃保温0min时硬度HRA达到94.0,并且样品WC晶粒尺寸在烧结过程中长大不明显,随着烧结温度的提高和保温时间的增加WC晶粒尺寸的变化不大。  相似文献   

9.
采用常规微波烧结法制备WC-Co硬质合金时,表层区域出现严重的脱碳现象,导致表层和中心区域的组织显著不同,即产生核壳结构,对合金的力学性能造成不利影响。本文作者以WC粉和Co粉为原料粉末,采用微波烧结法制备88%WC-12%Co(YG12)和94%WC-6%Co(YG6)硬质合金,在混料时添加炭黑,避免合金中脱碳相的生成。检验表明:当炭黑添加量(质量分数)接近0.2%时,YG12和YG6的抗弯强度(TRS)分别达到3 109和2 642 MPa;硬度(HRA)分别为88.7和89.8。此时,合金表面和中心区域具有一致的显微组织结构,没有发现脱碳相η(W3Co3C)。但当炭黑添加量超过0.2%时,大量析出的石墨相对合金的力学性能,尤其对硬度产生不利影响,当炭黑添加量为0.4%时,YG12和YG6的抗弯强度分别只有2 465 MPa和2 213 MPa。  相似文献   

10.
采用高能球磨制备纳米WC-3Co粉末,再通过放电等离子烧结(spark plasma sintering,SPS)制备超细晶WC-3Co硬质合金。研究SPS工艺参数对合金致密度、显微组织和力学性能的影响,并对SPS和热压工艺(hotpressing,HP)进行对比。结果表明:SPS可实现WC-3Co粉末的低温快速致密化。升高温度或提高压力都使得合金的致密度提高,同时导致WC晶粒长大。SPS较HP升温速率快且烧结时间更短,合金组织更加均匀,在1 300℃保温5 min、烧结压力为40 MPa的条件下所制备的合金具有最佳综合性能,其平均晶粒度为0.32μm,相对密度、硬度、抗弯强度、断裂韧性分别为99.3%、2257 HV30、1 906 MPa、10.36 MPa.m1/2。而在1 450℃、压力为50 MPa、保压5 min条件下,热压合金的致密度、硬度和断裂韧性分别为99.6%、2 264 HV30和11.01 MPa.m1/2,但抗弯强度只有1 301 MPa,平均晶粒度为0.47μm。  相似文献   

11.
研究了机械合金化纳米晶WC-10Co复合粉末的真空烧结致密化行为和一般规律。结果表明:提高烧结温度和延长烧结时间有利于样品的烧结致密化过程,在1275-1300℃时致密化速度较快,在1300℃烧结15min后致密化过程基本完成;VC和Cr3C2复合晶粒长大抑制剂含量的增加不利于致密化过程;新型晶粒长大抑制剂A可以更有效地抑制晶粒长大;纳米晶WC-10Co-0.8VC/Cr3C2-0.2A复合粉末压坯在1375℃烧结30min后,所得的烧结密度为14.48g/cm3,晶粒尺寸约为180nm。  相似文献   

12.
以WC-6%Co和WC-8%120为研究体系,在1390℃压力烧结下制备不同配比复式碳化物的超细硬质合金。分别采用洛氏硬度检测、抗弯强度检测、钴磁检测、矫顽磁力检测等方法,通过扫描电镜和电子衍射分析,研究了不同量的(W,Ti,Ta)C复式碳化物对超细硬质合金性能的影响。结果表明:WC-6%Co-2%(W,Ti,Ta)C超细硬质合金的矫顽磁力为45.39kA·m^-1,硬度为94.0HRA,抗弯强度为2280MPa;WC-8%Co-2%(w,Ti,Ta)C超细硬质合金的矫顽磁力为37.4kA·m^-1,硬度为93.4HRA,抗弯强度为2670MPa;WC-8%Co-2%(w,Ti,Ta)C-0.5%(Cr3C2/VC)的矫顽磁力为38.2kA·m^-1,硬度为93.6HRA,抗弯强度为2780MPa;它们具有较高的综合性能。  相似文献   

13.
采用微波烧结工艺制备WC-Co亚微米级硬质合金。由于微波烧结硬质合金脱碳现象严重,采用添加活性炭的方式加以改善。实验采用的总配碳量质量分数为8.84%、9.28%、9.71%、10.14%。结果表明:总配碳量为9.28%~9.71%时,微波烧结硬质合金组织性能较理想。微波烧结与常规烧结WC-Co亚微米硬质合金相比烧结温度低,保温时间短,实现了瞬时烧结,WC晶粒尺寸在烧结过程中长大不明显。微波烧结试样硬度平均值为91.8 HRA,最高为94.5HRA,均高于常规烧结结果(89.5 HRA、90.7 HRA)。但是强度、密度较常规烧结低。  相似文献   

14.
采用“溶剂脱脂+烧结”方法制备WC-6Co-1TaC硬质合金;研究了在同一烧结工艺下不同溶剂脱脂率对合金显微结构与性能的影响;以及在相同或相近的溶剂脱脂率下不同烧结工艺对合金显微结构与性能的影响;实验结果表明:高的溶剂脱脂率有利于获得更高性能的合金,溶剂脱脂率为41%的脱脂坯经烧结工艺A后较脱脂率为38%的试样抗弯强度提高16%,渗碳程度减轻,孔隙减小;烧结时在低温热脱脂阶段延长保温时间有利于残余粘结剂的排除和高温阶段通过进一步延长抽真空时间净化炉内气氛可以减轻渗碳程度从而提高合金性能。溶剂脱脂率为41%经烧结工艺B后制备的合金较经烧结工艺A制备的合金强度提高17%,达1684 MPa。  相似文献   

15.
采用放电等离子烧结技术制取不同TiC含量的WC-8Co硬质合金。分析了TiC含量对WC-8Co基硬质合金刀具材料的致密度、力学性能和微观组织的影响。实验结果表明,随着TiC含量增加,WC-8Co硬质合金常温综合力学性能先提高后降低,添加5%(质量分数)TiC的WC-8Co硬质合金具有较好的综合力学性能。当烧结温度和压力分别为1 250℃、50 MPa时,WC-5TiC-8Co硬质合金材料致密度、维氏硬度、断裂韧性以及室温下的抗弯强度分别达到98.85%、19.49 GPa、9.46 MPa·m1/2和1 893 MPa。硬质合金致密化烧结曲线和组织显微形貌的分析结果表明,随着TiC含量增加,硬质合金的致密化烧结的起始温度向更低的温度偏移,Co相流动性变差,从而导致致密化烧结条件变差。试样中孔隙增多,是硬质合金维氏硬度和力学性能下降的主要原因。  相似文献   

16.
用真空热压法在 12 80~ 13 2 0℃温度范围内烧结制备了WC 0 .6VC 10Co超细硬质合金。微观组织结构和性能评价结果表明 :从国际市场上购买到的超细WC和Co粉 ,经过适当的粉末冶金工艺过程和 13 0 0℃以上压力辅助烧结可获得完全致密化的合金。致密化合金中的WC晶粒尚未明显生长 ,其平均晶粒间距为 169~ 179nm ,合金的维氏硬度值均超过了HV30 2 0 0 0 ;随烧结温度的升高 ,合金的Palmqvist断裂韧性增加 ,13 2 0℃热压样品的Palmqvist韧性值可达 5 17N·mm- 1 。在高分辨场发射扫描电镜下观察到的“WC晶粒团簇”现象 ,造成Co粘结相微观分布不均匀。对实验结果的分析和讨论有助于理解超细硬质合金烧结过程的机制和进一步优化其制备工艺过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号