首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
F. Jacob  S. Gall  J. Kessler 《Thin solid films》2007,515(15):6028-6031
The present work studies the influence of the Ga content (x = Ga / (Ga + In)) in the absorber on the solar cell performance for devices using (PVD)In2S3-based buffers. Input to the hypothesis of the relative conduction band positions can be found in the evolution of the device parameters with x. For experiments with x between 0 and 0.5 devices using (PVD)In2S3-based buffers are compared to reference devices using (CBD)CdS. Both buffers give similar cell characteristics for narrow band gap absorbers, typically EgCIGSe < 1.1 eV. However, the parameters of the cells buffered with (PVD)In2S3 are degraded when the absorber gap is widened whereas (CBD)CdS reference devices are only slightly affected. Consequently, the solar cell efficiency is similar for both buffer layers at the lower x values and increases with x only in the case of (CBD)CdS. These evolutions are coherent with the existence of a conduction band cliff at the CIGSe/(PVD)In2S3 interface.  相似文献   

2.
Kyurhee Shim 《Thin solid films》2008,516(10):3143-3146
The principal band gaps (E(Γ),E(L), and E(X)) and bond lengths (d(x,y,z))of the alloy (AlxGa1−x)1−zInzPyAs1−y (where, 0 < x + z < 1, and 0 < y < 1) are calculated over the entire composition range based on the first order correlated function expansion (CFE) scheme. Defining the lattice strain parameter as , it is found that a good quality of alloy (defining ? < ∼ 0.5%) can be obtained in the composition region : 0 < x < ∼ 0.3, 0 < y < ∼ 0.2 and 0 < z < ∼ 0.1. The first order CFE lattice matching relations and corresponding band gaps for the alloy on the GaAs substrate are also determined. It is found that the principal band gaps of the alloy (AlxGa1−x)1−zInzPyAs1−y lattice matched to GaAs covers band gap ranges: 1.45 eV E < (Γ) 2.69 eV, 1.80 eV < E(L) < 2.38 eV, and 1.97 eV < E(X) < 2.20 eV, while the direct band gap covers from 1.45 eV to 2.05 eV. Our theoretical prediction was compared with the existing experimental data.  相似文献   

3.
Highly oriented (1 0 0) NaxWO3 thin films were fabricated in the composition range 0.1 ≤ x ≤ 0.46 by pulsed laser deposition technique. The films showed transition from metallic to insulating behaviour at a critical composition between x = 0.15 and 0.2. The pseudo-cubic symmetry of NaxWO3 thin films across the transition region is desirable for understanding the composition controlled metal-insulator transition in the absence of any structural phase transformation. The electrical transport properties exhibited by these films across the transition regime were investigated. While the resistivity varied as T2 at low temperatures in the metallic regime, a variable range hopping conduction was observed for the insulating samples. For metallic compositions, a non-linear dependence of resistivity in temperature was also observed from 300 to 7 K, whose exponent varied with the composition of the film.  相似文献   

4.
The Gd2(TixZr1 − x)2O7 (x = 0, 0.25, 0.50, 0.75, 1.00) ceramics were synthesized by solid state reaction at 1650 °C for 10 h in air. The relative density and structure of Gd2(TixZr1 − x)2O7 were analyzed by the Archimedes method and X-ray diffraction. The thermal diffusivity of Gd2(TixZr1 − x)2O7 from room temperature to 1400 °C was measured by a laser-flash method. The Gd2Zr2O7 has a defect fluorite-type structure; however, Gd2(TixZr1 − x)2O7 (0.25 ≤ x ≤ 1.00) compositions exhibit an ordered pyrochlore-type structure. Gd2Zr2O7 and Gd2Ti2O7 are infinitely soluable. The thermal conductivity of Gd2(TixZr1 − x)2O7 increases with increasing Ti content under identical temperature conditions. The thermal conductivity of Gd2(TixZr1 − x)2O7 first decreases gradually with the increase of temperature below 1000 °C and then increases slightly above 1000 °C. The thermal conductivity of Gd2(TixZr1 − x)2O7 is within the range of 1.33 to 2.86 W m− 1 K− 1 from room temperature to 1400 °C.  相似文献   

5.
Semiconducting As2Se3 thin films have been prepared from an aqueous bath at room temperature onto stainless steel and fluorine-doped tin oxide (F.T.O.)-coated glass substrates using an electrodeposition technique. It has been found that As2O3 and SeO2 in the volumetric proportion as 4:6 and their equimolar solutions of 0.075 M concentration forms good quality films of As2Se3. The films are annealed in a nitrogen atmosphere at temperature of 200 °C for 2 h. The films are characterised by scanning electron microscopy, X-ray diffraction and optical absorption techniques. Studies reveal that asdeposited and annealed thin films are polycrystalline in nature. The optical band gap has been found to be 2.15 eV for the above-mentioned composition and concentration of the film.  相似文献   

6.
Boron tungsten bronzes BxWO3 (0.01 ≤ x ≤ 0.08) were synthesized by hybrid microwave method from mixtures of WO3 and amorphous boron powder. With the increase of boron content, the crystal structure of BxWO3 transforms from orthorhombic (x = 0.01) to tetragonal α (x = 0.048) and then to tetragonal β (0.07 ≤ x ≤ 0.08). The average size of crystallites is in the range of 1-10 μm. All samples show semiconducting behaviour in their temperature dependence of resistivity. The conduction behaviour above 80 K for samples with x = 0.01 and 0.08 can be explained using the variable-range hopping and thermally activated mechanism, respectively. Comparative experiments showed that boron bronze phases cannot be obtained by the microwave heating of pure WO3 powder or a mixture of B2O3 and WO3 under the same conditions.  相似文献   

7.
Nanocrystalline thin films of mixed rare earth oxides (Y1-xErx)2O3(0.1 ≤ x ≤ 1) were deposited by electron beam evaporation technique on polished fused silica glass at different substrate temperatures (200-500 °C). The effect of the substrate temperature as well as the mixing parameter (x) on the structural and optical properties of these films has been investigated by using X-ray diffraction (XRD), energy dispersive x-ray analysis and optical spectrophotometry. XRD investigation shows that mixed rare earth oxides film (Y1-xErx)2O3 grown at lower substrate temperature (Ts ≤ 300 °C) are poorly crystalline, whereas films grown at higher substrate temperatures (Ts ≥ 400 °C) tend to have better crystallinity. Furthermore, the mixing parameter (x) was found to stabilize the cubic phase over the entire of 0.1 ≤ x ≤ 1. The crystallite size of the films was found to vary in the range from 25 to 39 nm. Optical band gap of the films was deterimined by analysis of the absoprtion coeffifcient. For films deposited at different substrate temperatures direct and indirect transitions occur with energies varied from 5.29 to 5.94 eV and from 4.23 to 4.51 eV, respectively. However, films of different composition x, give optical band gap varied from 6.14 to 5.86 eV for direct transition and from 5.23 to 4.22 eV for indirect transitions. Consequently, one may conclude that it is possible to tune the energy band gap by relative fraction of constituent oxides. It was found that optical constants increase with increasing the substrate temperature. Nevertheless, the values of n and k decrease with increasing the mixing parameter, x.  相似文献   

8.
Thermoelectric (TE) properties such as resistivity (ρ), Seebeck coefficient (S), and thermal conductivity (κ) of Ca4−3xCe3xMn3O10 (0<x≤0.03) polycrystalline samples were measured from room temperature to 1000 K. ρ shows an obvious decrease with the increment of Ce content. The hopping conduction mechanism is used to explain the conduction behavior of these samples. The negative S values indicate that these materials are n-type. The sample of x=0.03 has the largest power factor, 0.52×10−4 Wm−1 K−2 at 1000 K. The value of κ and the dimensionless figure of merit of this sample is 1.51 Wm−1 K−1 and 0.034 at 1000 K, respectively.  相似文献   

9.
Lead-free thick film negative temperature coefficient (NTC) thermistors based on perovskite-type BaCoIIxCoIII2xBi1 − 3xO3 (x ≤ 0.1) were prepared by mature screen-printing technology. The microstructures of the thick films sintered at 720 °C were examined by X-ray diffraction and scanning electron microscopy. The electrical properties were analyzed by measuring the resistance-temperature characteristics. For the BaBiO3 thick films, the room-temperature resistivity is 0.22 MΩ cm, while the room-temperature resistivity is sharply decreased to about 3 Ω cm by replacing of Bi with a small amount of Co. For compositions 0.02 ≤ x ≤ 0.1, the values of room-temperature resistivity (ρ23), thermistor constant (B25/85) and activation energy are in the range of 1.995-2.975 Ω cm, 1140-1234 K and 0.102-0.111 eV, respectively.  相似文献   

10.
The ferrite system NixCu0.8−xZn0.2Fe2O4 with 0.0 ≤ x ≤ 0.8 was synthesized. XRD measurement confirmed the presence of single-phase spinel structure. The area ratio of Fe3+ at the tetrahedral A- and octahedral B-sites was deduced from the spectral analysis of Mössbauer measurements. The results give evidence that Ni2+ replaces Cu at B-site in the present unit cell. The dielectric properties ?′, ?″, loss tangent tan(δ) and ac conductivity σac have been studied for the prepared samples in the temperature range (300-600 K) and over the frequency range (102 to 105 Hz). The electrical conductivity results revealed a semiconductor behavior with increasing nickel concentration with a change in the slope at the transition temperature Tc. The variation of the dielectric parameters (?′, ?″ and tan(δ)) with frequency and temperature displayed a strong dependence on nickel concentration. Dielectric anomaly at the transition temperature Tc was pronounced in the relations of ?′ and ?″ with temperature. The determined Tc was found to increase with increasing Ni content. The relation of tan(δ) with frequency at different temperatures showed two relaxation processes where the relaxation time and maximum frequency of the hopping conduction mechanism were determined. The results are explained in the light of cation-anion-cation and cation-cation interactions over the octahedral site in the spinel structure.  相似文献   

11.
The occurrence of fast-ionic conduction in the ternary system 40(Cu1−xAgxI)-40(Ag2O)-20(V2O5), (0.05≤x≤0.25) has been described. The formation of composite solid electrolyte materials comprising glassy and crystalline phases has been identified by means of X-ray diffraction analysis. Fourier transform infrared spectroscopic studies have confirmed the presence of VO43− and V2O74− groups in these new materials. Detailed thermal characterization of these materials carried out by differential scanning calorimetry has indicated the transition temperature of one of the reaction products viz., AgI. From the conductivity measurements carried out using the complex impedance analysis, the values of room temperature electrical conductivity (σRT) and activation energy for ionic migration in these materials are found to be of the order of 10−2 to 10−4 S cm−1 and 0.22-0.35 eV, respectively. The ionic transport number (ti) measurements made using Wagner’s polarization method and evaluation of silver ionic transport number (tAg+) by galvanic cell method have been used to estimate the extent of contribution of ionic conductivity especially due to silver ionic transport to the total conductivity observed in these materials.  相似文献   

12.
This paper reports the structural and dielectric properties of Ba(Ti1 − xZrx)O3 (x = 0-0.3) ceramics. Single-phase solid solutions of the samples were determined by X-ray diffraction. Microscopic observation by scanning electron microscope revealed dense, single-phase microstructure with large grains (20-60 μm). The evolution of dielectric behavior from a sharp ferroelectric peak (for x ≤ 0.08) to a round dielectric peak (for 0.15 ≤ x ≤ 0.25) with pinched phase transitions and successively to a ferroelectric relaxor (for x = 0.3) was observed with increasing Zr concentration. Compared with pure BaTiO3, broaden dielectric peaks with high dielectric constant of 25,000-40,000 and reasonably low loss (tanδ: 0.01-0.06) in the Ba(Ti1 − xZrx)O3 ceramics have been observed, indicating great application potential as a dielectric material.  相似文献   

13.
The grain size and density of the sintered (Zn1 − xAlxO)mIn2O3 bodies decreased with the small Al2O3 content (≤ 0.012), and then increased gradually by further increasing the Al2O3 content. The addition of Al for Zn in the (ZnO)mIn2O3 led to an increase in both the electrical conductivity and the absolute value of the Seebeck coefficient. This indicates that the power factor was significantly enhanced by adding Al for Zn. The thermoelectric power factor was maximized to 1.67 × 10− 3 W m− 1 K− 2 at 1073 K for the (Zn0.992Al0.008O)mIn2O3 sample.  相似文献   

14.
We have investigated the specific heat of hole-doped vanadium oxides Y1−xCaxVO3 (0 ≤ x ≤ 0.11), Pr1−xCaxVO3 (0 ≤ x ≤ 0.3) and Nd1−xSrxVO3 (0 ≤ x ≤ 0.2) probably for the first time by applying the Modified Rigid ion model (MRIM). The results obtained on temperature dependent (1 K ≤ T ≤ 300 K) specific heat are in reasonably good agreement with the experimental data. The impact of lattice distortions on the elastic and thermal properties of the present Mott insulators is portrayed by an atomistic approach. The scope of further improvement in the present model has also been discussed.  相似文献   

15.
Oxides belonging to the families Ba3ZnTa2−xNbxO9 and Ba3MgTa2−xNbxO9 were synthesized by the solid state reaction route. Sintering temperatures of 1300°C led to oxides with disordered (cubic) perovskite structure. However, on sintering at 1425°C hexagonally ordered structures were obtained for Ba3MgTa2−xNbxO9 over the entire range (0≤x≤1) of composition, while for Ba3ZnTa2−xNbxO9 the ordered structure exists in a limited range (0≤x≤0.5). The dielectric constant is close to 30 for the Ba3ZnTa2−xNbxO9 family of oxides while the Mg analogues have lower dielectric constant of ∼18 in the range 50 Hz to 500 kHz. At microwave frequencies (5-7 GHz) dielectric constant increases with increase in niobium concentration (22-26) for Ba3ZnTa2−xNbxO9; for Ba3MgTa2−xNbxO9 it varies between 12 and 14. The “Zn” compounds have much higher quality factors and lower temperature coefficient of resonant frequency compared to the “Mg” analogues.  相似文献   

16.
R. Azimirad 《Thin solid films》2006,515(2):644-647
In this research, the effect of Fe2O3 content on the electrochromic properties of WO3 in thermally evaporated (WO3)1−x-(Fe2O3)x thin films (0 ≤ x ≤ 0.4) has been studied. The atomic composition of the deposited metal oxides was determined by X-ray photoelectron spectroscopy analysis. The surface morphology of the thin films has been examined by atomic force microscopy. The surface roughness of all the films was measured about 1.3 nm with an average lateral grain size of 30 nm showing a smooth and nanostructured surface. The electrochromic properties of (WO3)1−x-(Fe2O3)x thin films deposited on ITO/glass substrate were studied in a LiClO4 + PC electrolyte by using ultraviolet-visible spectrophotometry. It was shown that increasing the Fe2O3 content leads to reduction of the optical density (ΔOD) of the colored films and also leads to increasing the optimum coloring voltage from 4 to 6 V in which ΔOD shows its maximum values, in our experimental conditions. Furthermore, by using this procedure, it is possible to make an electrochromical filter which behaves similar to the colored WO3 film in the visible region, while it can be nearly transparent for near-infrared wavelengths, in contrast of the pure colored WO3 film.  相似文献   

17.
Ramakanta Naik 《Thin solid films》2010,518(19):5437-5441
In this paper, we report results of the optical properties of thermally deposited As2 − xS3 − xSbx thin films with x = 0.02, 0.07, 0.1 and 0.15. We have characterized the deposited films by Fourier Transform Infrared, Raman and X-ray photoelectron spectroscopy (XPS). The relationship between the structural and optical properties and the compositional variation were investigated. It was found that the optical bandgap decreases with increase in Sb content. The XPS core level spectra show a decrease in As2S3 percentage with increase in Sb content. This is confirmed from the shifting of the Raman peak from AsS3 vibrational mode towards SbS3 vibrational mode.  相似文献   

18.
Clas Persson 《Thin solid films》2009,517(7):2374-7507
Green's functions modelling of the impurity induced effects in p-type CuIn1 − xGaxS2 and CuIn1 − xGaxSe2 (x = 0.0, 0.5, and 1.0) reveals that: (i) the critical active acceptor concentration for the metal non-metal transition occurs at Nc ≈ 1017-1018 cm− 3 for impurities with ionization energy of EA ≈ 30-60 meV. (ii) For acceptor concentrations NA > Nc, the hole gas of the metallic phase affects the band-edge energies and narrows the energy gap Eg = Eg0 − ΔEg. The energy shift of the valence-band maximum ΔEv1 is roughly twice as large as the shift of the conduction-band minimum ΔEc1. (iii) ΔEv1 depends strongly on the non-parabolicity of the valence bands. (iv) Sulfur based compounds and Ga-rich alloys have the largest shifts of their band edges. (v) A high active acceptor concentrations of NA = 1020 cm− 3 implies a band-gap narrowing in the order of ΔEg ≈ 0.2 eV, thus Eg = Eg0 − 0.2 eV, and an optical band gap of Egopt ≈ Eg0 − 0.1 eV.  相似文献   

19.
Orthorhombic perovskite-type Ca(Mn1−xTix)O3−δ (0 ≤ x ≤ 0.7) was synthesized at 1173 K for 12 h in a flow of oxygen from a precursor gel prepared using citric acid and ethylene glycol. The Mn3+ ion was generated by substituting a Ti4+ ion in CaMnO3. The average particle size was 100-300 nm and did not depend on x. The lattice constants and the (Mn, Ti)-O distance increased linearly with increasing x. The variation in global instability index (GII) indicated that the instability of the structure increases monotonically with increasing x. Ca(Mn1−xTix)O3−δ was an n-type semiconductor that had its minimum values of electrical resistivity (ρ) and activation energy (Ea) at x = 0.1. Ca(Mn1−xTix)O3−δ (x = 0 and 0.1) exhibited a weak ferromagnetic behavior. The variation in μeff indicated that the spin state of the Mn3+ ion changes from low to high at x = 0.1, then reverts to low in the range of 0.2 ≤ x ≤ 0.7. The variations in ρ and Ea are explained by the number of electrons according to the change in the spin state of the Mn3+ ion.  相似文献   

20.
The dielectric function of bulk CuAl1 − xInxSe2 with composition x varying from x = 0.07 to x = 0.6 were studied over the photon energy region 1.0-6.0 eV at room temperature by spectroscopic ellipsometry. Information on the inter-band optical transitions was obtained from the results of the standard critical point analysis of the obtained dielectric function. With increasing Indium content, all spectral features of the obtained dielectric functions were found to gradually shift towards lower energies. The details of this shift for each critical point retrieved from the obtained dielectric function were disclosed. A compositional dependence of the optical transitions in Γ point of the Brillouin zone was verified to be strong. Such dependence for N and T points turned out to be weak by comparison. The later fact was accounted for a small compositional shift of the conduction band states in N and T points as compared to Γ point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号