首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni-silicide film was deposited at a low temperature of 160 °C by CVD using a Ni(PF3)4/Si3H8 gas system. Injecting Si3H8 during the Ni deposition does not affect the deposition rate, but the step-coverage quality deteriorates at high growth temperatures. At high growth temperatures, the Ni/Si ratio of the film deposited on the sidewall varies as the distance from the open area increases. High step-coverage quality and a constant Ni/Si ratio independent of the location of the deposition are strongly required to fabricate a three-dimensional device. These requirements were achieved with this CVD by depositing the Ni-silicide film below 180 °C.  相似文献   

2.
The hetero-structured SiCX films have been deposited by hot-wire CVD using SiH3CH3 as the carbon source gas. Although the carbon source gas ratio and filament temperature in the deposition using SiH3CH3 were smaller than those using C2H6, the carbon content in the sample deposited using SiH3CH3 was similar to that deposited using C2H6. The optical energy gap in the sample deposited using SiH3CH3 was larger than that deposited using C2H6. The sample deposited using SiH3CH3 under optimized condition showed a wide optical energy gap of 1.99 eV and a large dark conductivity of 15.1 S/cm. The p-type sample deposited using SiH3CH3 under the optimized condition has been used as a window layer material in p-i-n a-Si:H based solar cells.  相似文献   

3.
Titanium Interlayer Mediated Epitaxy (TIME) has been shown to promote the formation of epitaxial CoSi2 on Si (100). Similarities between Si and Si1−xGex alloys have motivated a study of whether the TIME process could be successful in forming epitaxial CoSi2 on Si1−xGex. Titanium layers of varying thickness were deposited as interlayers between a Co layer and c-Si/Si0.8Ge0.2 grown epitaxially onto Si (100) to investigate their role in the formation of epitaxial CoSi2 on Si1−xGex alloys. The effect of Ti interlayer thickness on the orientation of CoSi2 to the Si1−xGex substrate, and the conditions under which a polycrystalline CoSi2 film has been formed have been studied. It was found that Ti was beneficial in promoting epitaxy to the substrate in all cases. The experimental results indicate that with a Ti interlayer thickness of ∼ 50 Å, the formation of epitaxial CoSi2 adjacent to the substrate was achieved, and pinhole formation was minimized. It was also observed that for increased interlayer thickness, Ti reacted with Si to form a titanium silicide.  相似文献   

4.
We deposited silicon nitride films by alternating exposures to Si2Cl6 and NH3 in a cold-wall reactor, and the growth rate and characteristics were studied with varying process temperature and reactant exposures. The physical and electrical properties of the films were also investigated in comparison with other silicon nitride films. The deposition reaction was self-limiting at process temperature of 515 and 557 °C, and the growth rates were 0.24 and 0.28 nm/cycle with Si2Cl6 exposure over 2 × 108 L. These growth rates with Si2Cl6 are higher than that with SiH2Cl2, and are obtained with reactant exposures lower than those of the SiH2Cl2 case. At process temperature of 573 °C where the wafer temperature during Si2Cl6 pulse is 513 °C, the growth rate increased with Si2Cl6 exposure owing to thermal deposition of Si2Cl6. The deposited films are nonstoichiometric SiN, and were easily oxidized by air exposure to contain 7-8 at.% of oxygen in the bulk film. The deposition by using Si2Cl6 exhibited a higher deposition rate with lower reactant exposures as compared with the deposition by using SiH2Cl2, and exhibited good physical and electrical properties that were equivalent or superior to those of the film deposited by using SiH2Cl2.  相似文献   

5.
The Fe3Si(24 nm)/CaF2(2 nm)/Fe3Si(12 nm) magnetic tunnel junction (MTJ) structures were grown epitaxially on CaF2/Si(111) by molecular beam epitaxy (MBE). The 12-nm-thick Fe3Si underlayer was grown epitaxially on CaF2/Si(111) at approximately 400 °C; however, the surface of the Fe3Si film was very rough, and thus a lot of pinholes are considered to exist in the 2-nm-thick CaF2 barrier layer. The average roughness (Ra) of the CaF2 barrier layer was 7.8 nm. This problem was overcome by low-temperature deposition of Fe and Si at 80 °C on CaF2/Si(111), followed by annealing at 250 °C for 30 min to form the Fe3Si layer. The Ra roughness was significantly reduced down to approximately 0.26 nm. A hysteresis loop with coercive field Hc of approximately 25 Oe was obtained in the magnetic field dependence of Kerr rotation at room temperature (RT).  相似文献   

6.
We have investigated the structural properties of Si1 − xGex nanocrystals formed in an amorphous SiO2 matrix by magnetron sputtering deposition. The influence of deposition parameters on nanocrystal size, shape, arrangement and internal structure was examined by X-ray diffraction, Raman spectroscopy, grazing incidence small angle X-ray scattering, and high resolution transmission electron microscopy. We found conditions for the formation of spherical Si1 − xGex nanocrystals with average sizes between 3 and 13 nm, uniformly distributed in the matrix. In addition we have shown the influence of deposition parameters on average nanocrystal size and Ge content x.  相似文献   

7.
Behavior of N atoms after thermal nitridation of Si1 − xGex (100) surface in NH3 atmosphere at 400 °C was investigated. X-ray photoelectron spectroscopy (XPS) results show that N atomic amount after nitridation tends to increase with increasing Ge fraction, and amount of N atoms bonded with Ge atoms decreases by heat treatment in H2 at 400 °C. For nitrided Si0.3Ge0.7(100), the bonding between N and Si atoms forms Si3N4 structure whose amount is larger than that for nitrided Si(100). Angle-resolved XPS measurements show that there are N atoms not only at the outermost surface but also beneath surface especially in a deeper region around a few atomic layers for the nitrided Si(100), Si0.3Ge0.7(100) and Ge(100). From these results, it is suggested that penetration of N atoms through around a few atomic layers for Si, Si0.3Ge0.7 and Ge occurs during nitridation, and the N atoms for the nitrided Si0.3Ge0.7(100) dominantly form a Si3N4 structure which stably remains even during heat treatment in H2 at 400 °C.  相似文献   

8.
Lead-free piezoelectric thin films of NaNbO3-BaTiO3 were fabricated on Pt/TiOx/SiO2/Si substrates by chemical solution deposition. Perovskite NaNbO3-BaTiO3 single-phase thin films with improved leakage-current and ferroelectric properties were prepared at 650 °C by doping with a small amount of Mn. The 1.0 and 3.0 mol% Mn-doped 0.95NaNbO3-0.05BaTiO3 thin films showed slim ferroelectric P-E hysteresis and field-induced strain loops at room temperature. The 1.0 and 3.0 mol% Mn-doped 0.95NaNbO3-0.05BaTiO3 films showed remanent polarization values of 6.3 and 6.2 μC/cm2, and coercive field of 41 and 55 kV/cm, respectively. From the slope of the field-induced strain loop, the effective piezoelectric coefficient (d33) was found to be 40-60 pm/V.  相似文献   

9.
Itzik Shturman 《Thin solid films》2009,517(8):2767-2774
The effects of LaNiO3 (LNO) and Pt electrodes on the properties of Pb(Zrx,Ti1 − x)O3 (PZT) films were compared. Both LNO and PZT were prepared by chemical solution deposition (CSD) methods. Specifically, the microstructure of LNO and its influence on the PZT properties were studied as a function of PbO excess. Conditions to minimize the Pyrochlore phase and porosity were found. Remnant polarization, coercive field and fatigue limit were improved in the PZT/LNO films relative to the PZT/Pt films. Additionally, the PZT crystallization temperature over LNO was 500 °C, about ~ 50 °C lower than over Pt. The crystallization temperature reported here is amongst the lowest values for CSD-based PZT films.  相似文献   

10.
The microwave dielectric properties of La(Mg0.5−xCoxSn0.5)O3 ceramics were examined with a view to exploiting them for mobile communication. The La(Mg0.5−xCoxSn0.5)O3 ceramics were prepared using the conventional solid-state method with various sintering temperatures. The X-ray diffraction patterns of the La(Mg0.4Co0.1Sn0.5)O3 ceramics revealed that La(Mg0.4Co0.1Sn0.5)O3 is the main crystalline phase, which is accompanied by small extent of La2Sn2O7 as the second phase. Formation of this Sn-rich second phase was attributed to the loss of MgO upon ignition. Increasing the sintering temperatures seemed to promote the formation of La2Sn2O7. An apparent density of 6.67 g cm−3, a dielectric constant (?r) of 20.3, a quality factor (Q.F.) of 70,500 GHz, and a temperature coefficient of resonant frequency (τf) of −77 ppm °C−1 were obtained for La(Mg0.4Co0.1Sn0.5)O3 ceramics that were sintered at 1550 °C for 4 h.  相似文献   

11.
Feng-mei Zhou  Li Fan  Xiu-ji Shui 《Vacuum》2010,84(7):986-991
Tellurium oxide (TeOx) thin films are prepared on 36°YX-LiTaO3 substrates by RF magnetron sputtering technique under different deposition conditions. The structures and compositions of the TeOx films are analyzed by X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, which show that the TeOx films are amorphous and with different ratios of Te to O prepared in different conditions. Then the Love-type wave devices based on TeOx/36°YX-LiTaO3 structures are fabricated, and the temperature coefficient of delay (TCD) of the Love-type wave devices are investigated. The results show that, when TeOx films deposited at suitable deposition conditions, the TCD of the Love-type wave devices are less than that of the shear-horizontal (SH) wave devices fabricated on the bare 36°YX-LiTaO3 substrates, which demonstrates that the TCD of the TeOx films is negative. Moreover, the TCD of the devices are strongly dependent upon the preparation conditions and the thicknesses of the TeOx films. Therefore, the TCD of the Love-type wave devices can be optimized by suitably selecting the preparation conditions and the thickness of TeOx films.  相似文献   

12.
Si-B-C coatings have been prepared by chemical vapour deposition (CVD) from CH3SiCl3/BCl3/H2 precursor mixtures at low temperature (800-1050 °C) and reduced pressures (2, 5, 12 kPa). The kinetics (including apparent activation energy and reaction orders) related to the deposition process were determined within the regime controlled by chemical reactions. A wide range of coatings, prepared in various CVD conditions, were characterized in terms of morphology (scanning electron microscopy), structure (transmission electron microscopy, Raman spectroscopy) and elemental composition (Auger electron spectroscopy). On the basis of an in-situ gas phase analysis by Fourier transform infrared spectroscopy and in agreement with a previous study on the B-C system, the HBCl2 species was identified as an effective precursor of the boron element. HxSiCl(4−x), SiCl4 and CH4, derived from CH3SiCl3, were also shown to be involved in the homogeneous and the heterogeneous reactions generating silicon and carbon in the coating. A correlation between the various experimental approaches has supported a discussion on the chemical steps involved in the deposition process.  相似文献   

13.
CVD-TiSiN may be promising material for O2 diffusion-barrier films in ultra-large scale integrated (ULSI) circuit applications, especially for dynamic random-access memory (DRAM) capacitors. We developed a method for introducing Si into TiN, which is a common material used for diffusion-barrier films. TiSiN films were deposited by reacting TiCl4, SiH4, and NH3 in a hot-wall CVD reactor. We measured TiSiN film deposition rates, composition, crystal structure, and resistivity as a function of SiH4 partial pressure. Adding Si to TiN converts the TiN film structure from columnar grains to columnar-free structure films, thereby effectively removing the diffusion paths for O2. The resistivity of TiSiN films was increased by adding SiH4 to the reactant gas. With an increase in SiH4 partial pressure up to PSiH4=0.8 Torr, the resistivity gradually increased, but for PSiH4=1.2 Torr, the phase present in the film was almost SiN and its resistivity jumped up. TiSiN film rapid thermal annealing was performed to evaluate the anti-oxidation performance at the temperature range from 400 to 600 °C in 100 Torr of O2. For an increase the Si concentration up to 4.4 at.% improved anti-oxidation performance of TiSiN films. Flow modulation chemical vapor deposition (FMCVD) was used to create TiSiN films with low Cl concentration and improved anti-oxidation performance.  相似文献   

14.
S.D. Park 《Thin solid films》2007,515(12):5045-5048
In this study, the effect of BCl3/C4F8 gas mixture on the ZrOx etch rates and the etch selectivities of ZrOx/Si were investigated and its etch mechanism was studied. The increase of C4F8 in BCl3/C4F8 decreased the silicon etch rate significantly and finally deposition instead of etching occurred by mixing C4F8 more than 3%. In the case of ZrOx, the etch rate remained similar until 4% of C4F8 was mixed, however, the further increase of C4F8 percentage finally decreased the ZrOx etch rate and deposition instead of etching occurred by mixing more than 6%. Therefore, by mixing 3-4% of C4F8 to BCl3, infinite etch selectivity of ZrOx/Si could be obtained while maintaining the similar ZrOx etch rate. The differences in the etch behaviors of ZrOx and Si were related to the different thickness of C-F polymer formed on the surfaces. The thickness of the C-F polymer on the ZrOx surface was smaller due to the removal of carbon incident on the surface by forming COx with oxygen in ZrOx. Using 12 mTorr BCl3/C4F8 (4%), 700 W of rf power, and − 80 V of dc bias voltage, the ZrOx etch rate of about 535 Å/min could be obtained with infinite etch selectivity to Si.  相似文献   

15.
Ba(Ti1  x,Nix)O3 ferroelectric thin films with perovskite structure are prepared on fused quartz substrates by a sol-gel process. Optical transmittance measurements indicate that Ni-doping has an obvious effect on the energy band structure of BaTiO3. It has been found that the refractive index n, extinction coefficient k, and band gap energy Eg of the films are functions of the film composition. The Eg of Ba(Ti1  x,Nix)O3 decreases approximately linearly as the Ni content increases, which is attributed to the decline of conduction band energy level with increasing the Ni content. On the other hand, n and k both increase linearly with increasing the Ni content because of the increase of packing density. These results indicate that thin films might have potential applications in BaTiO3-based thin-film optical devices.  相似文献   

16.
Thin films of the zinc nickel ferrite, Zn0.7Ni0.3Fe2O4 (ZNFO), were deposited by the RF magnetron sputtering on a number of substrates, including (001) oriented single crystals of LaAlO3 (LAO) and SrTiO3 (STO), polycrystalline Pt/Si, and epitaxial films of BiFeO3 (BFO) and LaNiO3 (LNO). Except for the films on Pt/Si, the ZNFO films grown on other substrates were epitaxial and their magnetic properties were affected by the heteroepitaxy induced strains. Typically, the coercivity (Hc) was increased with the strain, i.e. Hc varied from 31 Oe for the 150 nm thick polycrystalline films grown on Pt/Si, to 55 Oe and 155 Oe for the 20 nm thick epitaxial films grown on BFO and LAO, respectively. The saturation magnetization of the epitaxial films was reduced accordingly to about 470 emu/cm3 from 986 emu/cm3 in the polycrystalline films. The all-oxide architecture allowed field-annealing to perform at the temperature above the Neel temperature of BFO (~ 370 °C), after which clear exchange bias was observed.  相似文献   

17.
A series of yellow-emitting phosphors based on a silicate host matrix, Ca3 − xSi2O7: xEu2+, was prepared by solid-state reaction method. The structure and photoluminescent properties of the phosphors were investigated. The XRD results show that the Eu2+ substitution of Ca2+ does not change the structure of Ca3Si2O7 host and there is no impurity phase for x < 0.12. The SEM images display that phosphors aggregate obviously and the shape of the phosphor particle is irregular. The EDX results reveal that the phosphors consist of Ca, Si, O, Eu and the concentration of these elements is close to the stoichiometric composition. The Ca3 − xSi2O7: xEu2+ phosphors can be excited at a wavelength of 300-490 nm, which is suitable for the emission band of near ultraviolet or blue light-emitting-diode (LED) chips. The phosphors exhibit a broad emission region from 520 to 650 nm and the emission peak centered at 568 nm. In addition, the shape and the position of the emission peak are not influenced by the Eu2+ concentration and excitation wavelength. The phosphor for x = 0.045 has the strongest excitation and emission intensity, and the Ca3 − xSi2O7: xEu2+ phosphors can be used as candidates for the white LEDs.  相似文献   

18.
Two approaches were applied to thermal plasma spray chemical vapor deposition (TPS CVD) in order to reduce crystal grain size or/and surface roughness of LiNb0.5Ta0.5O3 thin films while retaining the advantages of this method, such as high deposition rate. The first method consists of a two-step deposition, where the nucleation density is controlled in the first step and the film with high crystallinity is deposited in the second step. The surface roughness and grain size could be reduced from 1 nm to 7.7 nm, and from 200-350 nm to 120-180 nm, respectively. In the second approach, employing a one-step TPS CVD process, the conventional precursor was substituted by a double-alkoxide precursor and grain size in the deposited films could be reduced to 50-80 nm. Both approaches adopted in this work permitted to reduce the optical propagation loss.  相似文献   

19.
Fabrication of Mg2Si1−xGex (x = 0-1.0) was carried out using a spark plasma sintering technique initiated from melt-grown polycrystalline Mg2Si1−xGex powder. The thermoelectric properties were evaluated from RT to 873 K. The power factor of Mg2Si1−xGex with higher Ge content (x = 0.6-1.0) tends to decrease at higher temperatures, and the maximum value of about 2.2 × 10− 5 Wcm− 1K− 2 was observed at 420 K for Mg2Si and Mg2Si0.6Ge0.4. The coexistence of Si and Ge gave rise to a decrease in the thermal conductivity in the Mg2Si1−xGex. The values close to 0.02 Wcm− 1K− 1 were obtained for Mg2Si1−xGex (x = 0.4-0.6) over the temperature range from 573 to 773 K, with the minimum value being about 0.018 Wcm− 1K− 1 at 773 K for Mg2Si0.4Ge0.6. The maximum dimensionless figure of merit was estimated to be 0.67 at 750 K for samples of Mg2Si0.6Ge0.4.  相似文献   

20.
Three-dimensional (3D) supercapacitors consisting of Ba0.65Sr0.35TiO3 (BST)/NiSi2/silicon microchannel plate (MCP) stacked structure have been fabricated. The silicon MCP produced by electrochemical etching is utilized as a backbone of the 3D structure on which a nickel silicide current collector layer and Ba0.65Sr0.35TiO3 dielectric layer are deposited successively by electroless plating and the sol-gel method, respectively. The morphology and structure of the 3D BST/NiSi2/Si-MCP structure are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) and the electrochemical properties are determined by cyclic voltammetry (CV) and chronopotentiometry. The structure exhibits excellent capacitive behavior with a maximum capacitance of 784 F g−1. After 700 charging/discharging cycles, the Cf decreases slightly with only a 5.7% loss and is stable after more than 700 cycles. The BST/NiSi2/Si-MCP 3D structure is a potential supercapacitor in industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号