首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work thin films of Ti-Me (where Me: V, Nb, Ta) were deposited onto glass substrates by magnetron sputtering of mosaic target in reactive oxygen plasma. The properties of the prepared thin films were studied by X-ray diffraction (XRD), electron dispersive spectroscopy, temperature-dependent electrical and optical transmission spectroscopy measurements. The structural investigations indicate that thin films were XRD-amorphous. Reversible thermoresistance effect, recorded at 52 ± 1 °C was found from electrical measurements. The prepared coatings were well transparent in the visible part of the light spectrum from ca. 350 nm.  相似文献   

2.
Cu doped zinc titanate (ZnTiO3) films were prepared using radio frequency magnetron sputtering. Subsequent annealing of the as-deposited films was performed at temperatures ranging from 600 to 900 °C. It was found that the as-deposited films were amorphous and contained 0.84 at.% Cu. This was further confirmed by the onset of crystallization that took place at annealing temperatures 600 °C. The phase transformation for the as-deposited films and annealed films was investigated in this study. The results showed that Zn2Ti3O8, ZnTiO3, and TiO2 can coexist at 600 °C. When annealed at 700 °C, the results revealed that mainly the hexagonal ZnTiO3 phase formed, accompanied by minority amounts of TiO2 and Zn2Ti3O8. Unlike pure zinc titanate films, this result showed that the Zn2Ti3O8 phase can be stable at temperatures above 700 °C. Moreover, Cu addition in zinc titanate thin film could result in the decomposition of hexagonal (Zn,Cu) TiO3 phase at 800 °C. When the Cu content was increased in zinc titanate thin films from 0.84 at.% to 2.12 at.%, there were only two phases; Zn2Ti3O8 and ZnTiO3, coexisting at temperatures between 700 and 800 °C. This result indicated that a greater presence of Cu dopants in zinc titanate thin films leads to the existence of the Zn2Ti3O8 phase at higher temperatures.  相似文献   

3.
Thin films of the Heusler alloy Co2Cr0.6Fe0.4Al have been prepared by means of magnetron sputtering under varying conditions (sputter power, sputter pressure and substrate temperature). All the films are polycrystalline with the cubic B2 structure. The extent of Co-Al antisite defects, lattice constants, internal stress states are influenced by the sputter conditions which is related to differences in the saturation magnetization. The magnetic moment can be increased by additional annealing up to an optimum temperature of 400 °C, but does not reach the theoretically predicted value. Above 600 °C the metastable B2 phase transforms into either (ε)-Co/Cr or (α)-Co/Cr.  相似文献   

4.
Zn1−xFexO (x = 0, 0.052, 0.103, 0.157 and 0.212) films were prepared by the radio-frequency magnetron sputtering technique on Si (111) substrates and the microstructure of which was characterized by X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The samples had a preferential c-axis orientation and the position of (002) diffraction peak shifted to the lower degree side with increasing Fe component. In order to investigate the optical transmittance properties of Zn1−xFexO films, we prepared the films on Al2O3 (001) substrates simultaneity and the UV-VIS optical transmittance spectra showed that the band gap energy of Zn1−xFexO films decreased with increase of Fe concentration. Photoluminescence spectra of the samples were observed at room temperature.  相似文献   

5.
Yibin Li  Weidong Fei  Cong Xu 《Thin solid films》2007,515(23):8371-8375
Nd-substituted SrBi2Ta2O9 (SNBT) thin films are sputtered on Pt/Ta/SiO2/Si substrates. X-ray diffraction and x-ray photoelectron spectroscopy studies indicate that Nd3+ is substituted into the bismuth layered perovskite structure, preferentially at the Sr2+ site. The annealed thin film is polycrystalline with plate/needle-like grain microstructure. Secondary ion mass spectrometry results show that elements in SNBT thin film homogeneously distribute along film depth and interfacial diffusion takes place during post annealing. The Nd substitution leads to enhanced remnant polarization (2Pr = 18 μC/cm2) and reduced coercivity (2Ec = 64 kV/cm) at 180 kV/cm measured at 25 °C. After 1010 switching cycles, around 9% remnant polarization is decreased.  相似文献   

6.
Direct current magnetron sputtering was used to produce AlNxOy thin films, using an aluminum target, argon and a mixture of N2 + O2 (17:3) as reactive gases. The partial pressure of the reactive gas mixture was increased, maintaining the discharge current constant. Within the two identified regimes of the target (metallic and compound), four different tendencies for the deposition rate were found and a morphological evolution from columnar towards cauliflower-type, ending up as dense and featureless-type films. The structure was found to be Al-type (face centered cubic) and the structural characterization carried out by X-ray diffraction and transmission electron microscopy suggested the formation of an aluminum-based polycrystalline phase dispersed in an amorphous aluminum oxide/nitride (or oxynitride) matrix. This type of structure, composition, morphology and grain size, were found to be strongly correlated with the electrical response of the films, which showed a gradual transition between metallic-like responses towards semiconducting and even insulating-type behaviors. A group of films with high aluminum content revealed a sharp decrease of the temperature coefficient of resistance (TCR) as the concentration ratio of non-metallic/aluminum atomic ratio increased. Another group of samples, where the non-metallic content became more important, revealed a smooth transition between positive and negative values of TCR. In order to test whether the oxynitride films have a unique behavior or simply a transition between the typical responses of aluminum and of those of the correspondent nitride and oxide, the electrical properties of the ternary oxynitride system were compared with AlNx and AlOy systems, prepared in similar conditions.  相似文献   

7.
Zinc titanate (ZnTiO3) films were prepared using RF magnetron sputtering at substrate temperatures ranging from 30 to 400 °C. Subsequent annealing of the as-deposited films was performed at temperatures ranging from 600 to 900 °C. It was found that all as-deposited films were amorphous, as confirmed by XRD. This was further confirmed by the onset of crystallization that took place at annealing temperatures 600 °C. The phase transformation for the as-deposited films and annealed films were investigated in this study. The results revealed that pure ZnTiO3 (hexagonal phase) can exist, and was obtained at temperatures between 700 and 800 °C. However, it was found that decomposition from hexagonal ZnTiO3 to cubic Zn2TiO4 and rutile TiO2 took place with a further increase in temperature to 900 °C.  相似文献   

8.
GaN nanorods were synthesized by ammoniating Ga2O3/In2O3 thin films deposited on Si (111) with magnetron sputtering. X-ray diffraction, Scanning electronic microscope and high-resolution TEM results show that they are GaN single crystals, the sizes of which vary from 2 to 7 μm in length and 200 to 300 nm in diameter. In2O3 middle layer plays an important role in the GaN nanorod growth.  相似文献   

9.
Nickel ferrite NiFe2O4 (NFO) thin films have been prepared on a Si substrate (NFO/Si) and La0.7Sr0.3MnO3 (LSMO)-coated Si (100) substrate (NFO/LSMO/Si) by RF magnetron sputtering. The microstructures and magnetic properties of the two films were systematically investigated. X-ray diffraction (XRD) and atomic force microscopy (AFM) revealed that highly (331)-oriented NFO films with a smooth surface were grown on the LSMO/Si substrate. The magnetization of the films was measured at room temperature. It showed a clear hysteresis loop in both samples, with the magnetic field applied in the plane. However, no hysteresis loop is seen with the magnetic field applied perpendicular to the film plane. This indicates the presence of an anisotropy favoring the orientation of the magnetization in the direction parallel to the film plane. A study of magnetization hysteresis loop measurements indicates that the LSMO buffer layer may improve the magnetic properties of NFO thin films, and that the saturation magnetization increases from 4.15 × 104 to 3.5 × 105 A/m.  相似文献   

10.
Thin films of (WO3)1-x-(Fe2O3)x composition were deposited by thermal evaporation on glass substrates and then all samples were annealed at 200-500 °C in air. Optical properties such as transmittance, reflectance, optical bangap energy, and the optical constants of the “as deposited” and the annealed films were studied using ultraviolet-visible spectrophotometry. It was shown that the annealing process changes the film optical properties which were related to Fe2O3 concentration. Moreover, using X-ray photoelectron spectroscopy, we have indicated that WO3 is stoichiometric, while iron oxide was in both FeO and Fe2O3 compositions so that the FeO composition converted to Fe2O3 after the annealing process. Using atomic force microscopy, it was observed that surface of the “as deposited” films were smooth with a nanometric grain size. The film surface remained unchanged after annealing up to 300 °C. Surface roughness and the grain size of the films with x = 0, 0.05, and 0.75 highly increased at higher annealing temperatures (400 and 500 °C), but were nearly unchanged for medium x-values (0.3 and 0.4).  相似文献   

11.
The epitaxial strain can modify the physical properties of complex oxide thin films considerably. The strain effect is expected to be less pronounced for relatively thick films and the physical properties should resemble to the bulk material. However, it has been recently observed that the electronic and magnetic properties of La0.5Ca0.5MnO3 thin films deposited on (111) SrTiO3 substrates thicker than a threshold value differ considerably from the bulk material. This observation is a hint for some interesting microstructural features in these films. In the present study, the microstructure of La0.5Ca0.5MnO3 thin films on (111) SrTiO3 substrates is investigated by X-ray diffraction and high resolution transmission electron microscopy.  相似文献   

12.
In this work Eu-doped TiO2 thin films prepared by reactive magnetron co-sputtering of Ti-Eu metallic target have been studied. The results of photoluminescence (PL) and its correlation with microstructure have been described. Structural properties were examined by X-ray diffraction (XRD) and Atomic Force Microscopy (AFM). XRD studies have shown that thin films consisted of TiO2-anatase and AFM images display their high quality and dense nanocrystalline structure. PL spectra, measured at room temperature, show a dominating strong red luminescence corresponding to 5D0-7F2 transition at ∼ 617 nm and ∼ 623 nm. The evolution of photoluminescence and microstructure of the thin films has been examined as they were additionally annealed in an air ambient.  相似文献   

13.
Shao-Bo Mi 《Thin solid films》2011,519(7):2071-2074
Thin films of SrCuO2 with tetragonal structure have been epitaxially grown on SrTiO3 (001) substrates by high-oxygen pressure sputtering technique. The interface structure between SrCuO2 and SrTiO3 and configuration of defects in SrCuO2 thin films have been characterized by means of high-resolution transmission electron microscopy. Two types of film-substrate interface structure coexist and are determined as bulk-SrO-TiO2-Sr(O) -CuO2-Sr-bulk and bulk-SrO-TiO2-SrO-Sr(O) -CuO2-Sr-bulk. The planar faults with double SrO atomic layers in {100} planes in SrCuO2 thin films are observed, which mainly arise from the coalescence of these two types of film-substrate interface structure. Meanwhile, planar faults in {110} planes are observed in thin films and structural models are proposed.  相似文献   

14.
D.W Ma  H.M Lu  B.H Zhao  H.J Zhang 《Thin solid films》2004,461(2):250-255
Using the d.c. reactive magnetron sputtering method we have successfully deposited completely (002)-oriented ternary Zn1−xCdxO (0≤x≤0.6) alloy crystal films without Cd segregation on Si(111) substrates. X-Ray photoelectron spectroscopy measurements show that Cd/Zn ratios in the films are nearly consistent with those in the targets. The Zn and Cd exist only in oxidized states, no evidence of metallic Zn or Cd was observed. The O/(Cd+Zn) atomic ratios of the films are in the range of 0.89-0.98. Transmission electron microscopy measurements show that for the (002)-oriented films the grains are columnar structures with the c-axis perpendicular to the Si substrate. By post-annealing treatments in O2 ambient, the crystal quality of the Zn1−xCdxO films can be improved. For the sample of x=0.2, the optimal annealing temperature is 500 °C.  相似文献   

15.
TiO2 films were fabricated by direct current reactive magnetron sputtering. The effect of the sputtering power on the film structures, morphologies, and properties was investigated in detail. It is found that the concentration of oxygen impurities increased with increasing sputtering power accompanied by the bandgap (Eg) narrowing and broadening of photoluminescence (PL) peaks. The oxygen impurities were found to mainly play the role of recombination centers, leading to the decrease of photocatalytic activity. Furthermore, the photoconductivity to dark conductivity ratio could be used to evaluate and even predict photocatalytic activity to some extent.  相似文献   

16.
X.T. Li  L. Zhu  K.H. Wong 《Thin solid films》2008,516(16):5296-5299
High-quality Pb0.4Sr0.6TiO3 (PST) thin films have been epitaxially grown on MgO (100) substrates at various substrate temperatures by the pulsed laser deposition (PLD) technique. Their crystalline phase structures and surface morphology were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Their in-plane orientation was observed by the Phi scans on the (111) plane. Their dielectric properties were measured by a precision impedance analyzer. Results show that the perovskite phase was stable in PST thin film. The crystalline phase formation of the thin film depended on the deposition temperature. The phase formation ability and (100)-orientation of these films were increased with increasing deposition temperature. Both of the high tunabilities and low dielectric loss of the thin films show that the (100)-oriented PST is a potential material that can be used for tunable applications.  相似文献   

17.
Bi3.15Nd0.85Ti3O12 (BNdT) thin films with predominant (104)/(014) orientation were fabricated directly on (111)Pt/Ti/SiO2/Si substrates through a sol-gel process. The volume fraction of (104)/(014)-oriented grains in the film was estimated to be about 65% according to X-ray pole figure. The BNdT film is dense and uniform and consists of columnar grains penetrating the whole film thickness. The (104)/(014)-oriented BNdT film capacitors showed excellent ferroelectric properties with 2Pr = 46.4 μC/cm2 and Ec ≈ 140 kV/cm. The films also exhibit excellent piezoelectric property, with high piezoelectric coefficient d33 ≈ 17 pm/V.  相似文献   

18.
Cuprous oxide thin films were produced on soda-lime glass substrates using reactive RF-magnetron sputtering. The influence of deposition parameters and temperature on composition and structural properties of the single layers was extensively studied using X-ray diffraction. The control over microstructure and residual stresses is possible by changing reactive gas pressure and deposition temperature. Fiber textured Cu2O films showing a [100] preferred orientation and a fraction of untextured domains can be obtained: suitable modeling taking this microstructure into account shows the presence of a strong compressive stress decreasing with the temperature. Highly reproducible films can be obtained, whose microstructure is preserved when sputtering on tungsten and zinc oxide substrates.  相似文献   

19.
BiFeO3 (BFO) films were grown on LaNiO3-coated Si substrate by a RF magnetron sputtering system at temperatures in the range of 300-700 °C. X-ray reflectivity and high-resolution diffraction measurements were employed to characterize the microstructure of these films. For a substrate temperature below 300 °C and at 700 °C only partially crystalline films and completely randomly polycrystalline films were grown, whereas highly (001)-orientated BFO film was obtained for a substrate temperature in the range of 400-600 °C. The crystalline quality of BFO thin films increase as the deposition temperature increase except for the film deposited at 700 °C. The fitted result from X-ray reflectivity curves show that the densities of the BFO films are slightly less than their bulk values. For the BFO films deposited at 300-600 °C, the higher the deposition temperature, the larger the remnant polarization and surface roughness of the films present.  相似文献   

20.
Hydrogen-containing Ta2O5 (Ta2O5:H) thin films are considered to be a candidate for a proton-conducting solid-oxide electrolyte. In this study, Ta2O5:H thin films were prepared by reactively sputtering a Ta metal target in an O2 + H2O mixed gas. The effects of sputtering power and post-deposition heat treatment on the ion conducting properties of the Ta2O5:H thin films were studied. The ionic conductivity of the films was improved by decreasing the RF power and a maximum conductivity of 2 × 10−9 S/cm was obtained at an RF power of 20 W. The ionic conductivity decreased by heat-treatment in air, and no ion-conduction was observed after treatment at 300 °C due to the decrease in hydrogen content in the films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号