首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A procedure to dope n-type Cr2 − xTixO3 thin films is proposed. Besides doping the material, at the same time the method forms ohmic contacts on TixCr2 − xO3 films. It consists on the deposition of 10 nm Ti and 50 nm Au, followed by thermal annealing at 1000 °C for 20 min in N2 atmosphere. Ohmic contacts were formed on three samples with different composition: x = 0.17, 0.41 and 1.07 in a van der Pauw geometry for Hall effect measurements. These measurements are done between 35 K and 373 K. All samples showed n-type nature, with a charge carrier density (n) on the order of 1020 cm− 3, decreasing as x increased. As a function of temperature, n shows a minimum around 150 K, while the mobilities have an almost constant value of 11, 28 and 7 cm2V− 1 s− 1 for x = 0.17, 0.41 and 1.07, respectively.  相似文献   

2.
CuIn1 − xGaxTe2 thin films with x = 0, 0.5 and 1, have been prepared by flash evaporation technique. These semiconducting layers present a chalcopyrite structure. The optical measurements have been carried out in the wavelength range 200-3000 nm. The linear dependence of the lattice parameters as a function of Ga content obeying Vegard's law was observed. The films have high absorption coefficients (4 · 104 cm− 1) and optical band gaps ranging from 1.06 eV for CuInTe2 to 1.21 eV for CuGaTe2. The fundamental transition energies of the CuIn1 − xGaxTe2 thin films can be fitted by a parabolic equation namely Eg1(x) = 1.06 + 0.237x − 0.082x2. The second transition energies of the CuInTe2 and CuGaTe2 films were estimated to be: Eg2 = 1.21 eV and Eg2 = 1.39 eV respectively. This variation of the energy gap with x has allowed the achievement of absorber layers with large gaps.  相似文献   

3.
Q.G. Chi 《Thin solid films》2009,517(17):4826-4829
Lanthanum-and calcium-modified PbTiO3 (PLCT) ferroelectric thin films were successfully prepared on Pt(111)/Ti/SiO2/Si substrates by pulsed laser deposition. Influence of TiOx seed layer on texture and electric properties of PLCT films was investigated. It is found the PLCT films without seed layer exhibited highly (100)-textured, while using about 9 nm TiOx as seed layer lead to highly (301)-textured. The PLCT film with TiOx seed layer possess higher remnant polarization (Pr = 26 µC/cm2), better pyroelectric coefficient and figure of merit at room temperature (p = 370 µC/m2k, Fd = 190 × 10− 5 Pa− 1/2) than that of film without seed layer. The mechanism of the enhanced electric properties was also discussed.  相似文献   

4.
Single-crystalline Ti1−xNbxO2 (x = 0.2) films of 40 nm thickness were deposited on SrTiO3 (100) substrates by the pulsed laser deposition (PLD) technique. X-ray diffraction measurement confirmed epitaxial growth of anatase (001) film. The resistivity of Ti1−xNbxO2 films with x ≥ 0.03 is 2-3 × 10− 4 Ω cm at room temperature. The carrier density of Ti1−xNbxO2, which is almost proportional to the Nb concentration, can be controlled in a range of 1 × 1019 to 2 × 1021 cm− 3. Optical measurements revealed that internal transmittance in the visible and near-infrared region for films with x = 0.03 was more than 97%. These results demonstrate that the presently developed anatase Ti1−xNbxO2 is one of the promising candidates for the practical TCOs.  相似文献   

5.
Polycrystalline PdS thin films with tetragonal structure have been grown by direct sulphuration of Pd layers. They are formed by crystallites of size ∼ 50 nm. As-grown PdS films show a Seebeck coefficient, S = − 250 ± 30 μV/K, which indicates an n-type conductivity. Electrical resistivity of the samples, measured by the four contact probe, is (6.0 ± 0.6) × 10− 2 Ω·cm. Hall effect measurements, confirms n-type conductivity with a negative carrier density n = (8.0 ± 2.0) × 1018 cm− 3 and electron mobility μ of (20 ± 2) cm2/V s. Band gap energy (Eg) and absorption coefficient (α) are determined from the optical transmission and reflectance of the films. A direct transition with energy gap Eg = (1.60 ± 0.01) eV is obtained. Optical absorption coefficient in the range of photon energies hν > 2.0 eV is higher than 105 cm− 1. All these properties make PdS thin films a good alternative material for solar applications.  相似文献   

6.
Evaporation of Ag in the presence of an electron cyclotron resonance (ECR) oxygen plasma was used to deposit Ag2−xO films with a range of stoichiometries onto r-plane sapphire substrates. A quartz crystal oscillator (QCO) was used to accurately measure the silver and oxygen arrival rates and establish the O/Ag flux ratio needed to produce films with nominal Ag2O stoichiometry. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis indicates that the Ag2−xO films are not single phase but contain signatures of coexisting Ag2O and AgO components. XRD shows that the lattice matching with the r-plane sapphire substrate causes the Ag2O phase to grow with <002> heteroepitaxial crystallites coexisting with crystallites having <111> normal and random in-plane orientation. The AgO phase also forms with crystallites having <002> heteroepitaxy as well as crystallites with <111> normal and random in-plane orientation. The mixed phase Ag2−xO films exhibit approximately 77% optical transmission over the visible range (500 nm to 700 nm) and have a single absorption edge near 3.3 eV. Four-point van der Pauw conductivity and Hall effect measurements indicate that the Ag2−xO films are p-type with a conductivity on the order of 3 × 10− 3 Ω− 1 cm− 1.  相似文献   

7.
Copper indium disulphide CuInS2 (CIS) and diselenide CuInSe2 (CISe) and their alloys with gallium CuIn1 − xGaxSe2 (CIGSe) thin films have been prepared using both high- and non-vacuum processes. The well known two-stage process consisting in a sequential sputtering of Cu and In thin layers and a subsequent sulfurisation has led to the formation of good quality CuInS2 ternary compound. The films exhibit the well known chalcopyrite structure with a preferential orientation in the (112) plane suitable for the production of the efficient solar cells. The absorption coefficient of the films is higher than 104 cm− 1 and the band gap value is about 1.43 eV. A non-vacuum technique was also used. It consists on a one step electrodeposition of Cu, In and Se and in a second time Cu, In, Se and Ga. From the morphological and structural point of view, the films obtained are similar to those prepared by the first technique. The band gap value increases up from 1 eV for the CIS films to 1.26 eV for the CuIn1 − xGaxSe2 with 0 < x < 0.23. The resistivity at room temperature of the films was adjusted to 10 Ωcm after annealing. The films exhibit an absorption coefficient more than 105 cm− 1. The most important conclusion of this study is the interesting potential of electrodeposition as a promising option in low-cost CISe and CIGSe thin film based solar cells processing.  相似文献   

8.
We studied the growth and electrical properties of single crystalline mixed (Nd1 − xGdx)2O3 (NGO) thin films and compared the results with those of the binary Gd2O3 and Nd2O3 thin films, respectively. Epitaxial ternary NGO thin films were grown on Si(100) substrates using modified solid state molecular beam epitaxy. The films were characterized physically using various techniques. The capacitance equivalent oxide thickness of a 4.5 nm NGO thin film extracted from capacitance-voltage (C-V) characteristics was 0.9 nm, which is lower than all values reported earlier for other crystalline oxides. The leakage current density and the density of interface traps were 0.3 mA/cm2 at |Vg − VFB| =  1 V and 1.4 × 1012/cm2, respectively. These excellent electrical properties of NGO thin films demonstrate that such ternary oxides could be one of the promising candidates for gate dielectrics in the upcoming generations of complementary metal oxide semiconductor (CMOS) devices.  相似文献   

9.
Hole transport and optical properties were investigated on undoped and Mg-doped LaCuOS1−xSex (x=0-1) epitaxial films. Both electrical conductivity and Hall mobility were found to increase monotonously with increasing Se content in the films. The increase in Hall mobility is considered to be associated with the increase in valence band dispersion. Mg ion doping increased hole concentrations in the undoped films by an order of magnitude to ∼2×1020 cm−3, while Mg doping reduced mobility to merely half that of undoped films. The results suggest that hole scattering due to Mg impurity ions is suppressed by natural modulation doping originating from the layered structure of LaCuOS1−xSex. Hole concentrations showed no temperature dependence, indicating degenerate conduction. The largest value for conductivity, 140 S cm−1, was obtained with Mg-doped LaCuOSe epitaxial film. Accompanying characteristics included moderately high optical transparency in the visible region and blue photoluminescence.  相似文献   

10.
Nanocrystalline CdxZn1 − xO thin films with different Cd volume ratios in solution (x = 0, 0.25, 0.50, 0.75 and 1) have been deposited on glass substrate by sol-gel dip-coating method. The as-deposited films were subjected to drying and annealing temperatures of 275 °C and 450 °C in air, respectively. The prepared films were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, UV-vis spectroscopy and dc-electrical measurements. The results show that the samples are polycrystalline and the crystallinity of the films enhanced with x. The average grain size is in the range of 20-53 nm. The atomic percent of Cd:Zn was found to be 9.50:1.04, 6.20:3.77 and 4.42:6.61 for x = 0.75, 0.50 and 0.25, respectively. It was observed that the transmittance and the band gap decreased as x increased. All the films exhibit n-type electrical conductivity. The resistivity (ρ) and mobility (μ) are in the range of 3.3 × 102 − 3.4 × 10− 3 Ω cm, and 1.5 − 45 cm2 V− 1 s− 1 respectively. The electron density lies between 1.26 × 1016 and 0.2 × 1020 cm− 3.  相似文献   

11.
Silicon nitride (SiNx) is a material with many applications and can be deposited with various deposition techniques. Series of SiNx films were deposited with HWCVD, RF PECVD, MW PECVD and LF PECVD. The atomic densities are quantified using RBS and ERD. The influence of the atomic densities on the Si-N and Si-Si bond structure is studied. The density of N-N bonds is found to be negligible. New Si-N FTIR proportionality factors are determined which increase with increasing N/Si ratio from 1.2 · 1019 cm− 1 for Si rich films (N/Si = 0.2) to 2.4 · 1019 cm− 1 for N rich films (N/Si = 1.5). The peak position of the Si-H stretching mode in the FTIR spectrum is discussed using the chemical induction model. It is shown that especially for Si-rich films the hydrogen content affects the Si-H peak position. The influence of the composition on the refractive index of the films is discussed on the basis of the Lorentz-Lorenz equation and the Kramers-Kronig relation. The decreasing refractive index with increasing N/Si ratio is primarily caused by an increase of the band gap.  相似文献   

12.
Electrical conductivity in the dark, σ, and thermoelectric power, S, of PbxSn1−xTe0.5Se0.5 films with x = 0.4, 0.6, 0.8, and 1 were studied for films annealed at 473 K in the temperature range 300-473 K, while the Hall voltage was investigated at room temperature. The temperature dependence of σ revealed an intrinsic conduction mechanism above 370 K, while for temperatures less than 370 K an extrinsic conduction is dominant. Both activation energy, ΔE1, and the energy gap, Eg, were found to decrease with increasing Sn content. This decrease of Eg with increasing Sn content revealed that band inversion exists. The variation of S with temperature revealed that the investigated samples are non-degenerate semiconductors with p-type conduction. Also, the Fermi energy, EF, was determined from the linear variation of S with 1/T in the intrinsic range. The compositional dependence of the room temperature Hall constant, RH (0.21-0.38 cm3/Coul.), hole carrier's concentration, p (2.9-1.6 × 1019 cm−3), Hall mobility, μH (0.88-0.03 cm2/V s), and effective mass, m/me (0.28-0.78) are given.  相似文献   

13.
Akihiko Kono 《Vacuum》2009,84(5):625-628
A hot-cathode plasma sputtering technique was used for fabricating the highly transparent and conducting aluminum-doped zinc oxide (AZO) films on glass substrates from a disk-shaped AZO (Al2O3: 2 wt.%) target. Under particular conditions where the target voltage was VT = −200 V and the plasma excitation pressure was PS = 1.5 × 10−3 Torr, the lowest resistivity of 4.2 × 10−4 Ω cm was obtained at 400 nm, and this was associated with a carrier density of 8.7 × 1020 cm−3 and a Hall mobility of 17 cm2/V s. From the annealing experiment of the AZO films in the oxygen and nitrogen gases of the atmospheric pressure it was revealed that both the oxygen vacancies and the grain boundaries in the polycrystalline AZO film played an important role in the electrical properties of the film.  相似文献   

14.
Bottom gate microcrystalline silicon thin film transistors (μc-Si TFT) have been realized with two types of films: μc-Si(1) and μc-Si(2) with crystalline fraction of 80% and close to 100% respectively. On these TFTs we applied two types of passivation (SiNx and resist). μc-Si TFTs with resist as a passivation layer present a low leakage current of about 2.10− 12 A for VG = − 10 and VD = 0.1V an ON to OFF current ratio of 106, a threshold voltage of 7 V, a linear mobility of 0.1 cm2/V s, and a sub-threshold voltage of 0.9 V/dec. Microcrystalline silicon TFTs with SiNx as a passivation present a new phenomenon: a parasitic current for negative gate voltage (− 15 V) causes a bump and changes the shape of the sub-threshold region. This excess current can be explained by and oxygen contamination at the back interface.  相似文献   

15.
In this work, we report a study of the optical properties measured through spectral transmission and spectroscopic ellipsometry in Ge:H and GeYSi1 − Y:H (Y ≈ 0.97) films deposited by low frequency (LF) PE CVD with hydrogen (H) dilution. The dilution was varied in the range of R = 20 to 80. It was observed that H-dilution influences in a different way on the interface and bulk optical properties, which also depend on incorporation of silicon. The films with low band tail characterized by its Urbach energy, EU, and defect absorption, αD, have been obtained in Ge:H films for R = 50 with EU = 0.040 eV and αD = 2 × 103 cm− 1 (hν ≈ 1.04 eV), and in GeYSi1 − Y:H films for R=75 with EU = 0.030 eV and αD = 5 × 102 cm− 1 (hν ≈ 1.04 eV).  相似文献   

16.
We have investigated the effect of FeSi2 source purity on the electrical property of β-FeSi2 grown from solution. A high-purity FeSi2 source avoided a contamination of Cu and W metals was synthesized by melting a high-purity Fe (5N) and Si (5N-up) in a quartz ampoule. Glow discharge mass spectrometry revealed that the purity of the FeSi2 source synthesized using 5N-Fe and a quartz-ampoule-melting process is one order of magnitude higher than that of the conventional arc-melted FeSi2 source using 4N-Fe. The β-FeSi2 crystals grown using the high-purity FeSi2 and Zn solvent showed n-type conduction, whereas those grown using the arc-melted FeSi2 showed p-type. The carrier concentration of the n-type crystals was (4.9-6.3) × 1018 cm− 3, which was more than 10 times higher than that of the p-type crystals (5.2 × 1017 cm− 3). From the ICP-MS and SIMS analysis of the grown crystals, we found that dominant impurity concentrations (Cr, Mn, Co, Ni, Cu, Zn and W) in the p-type crystals were higher than those in the n-type ones. Therefore, the p-type conductivity of undoped crystals grown using Zn solvent results from unintentional doping by the high impurity level of the used FeSi2 source.  相似文献   

17.
Transparent and conducting zirconium-doped zinc oxide films have been prepared by radio frequency magnetron sputtering at room temperature. The ZrO2 content in the target is varied from 0 to 10 wt.%. The films are polycrystalline with a hexagonal structure and a preferred orientation along the c axis. As the ZrO2 content increases, the crystallinity and conductivity of the film are initially improved and then both show deterioration. Zr atoms mainly substitute Zn atoms when the ZrO2 content are 3 and 5 wt.%, but tend to cluster into grain boundaries at higher contents. The lowest resistivity achieved is 2.07 × 10− 3 Ω cm with the ZrO2 content of 5 wt.% with a Hall mobility of 16 cm2 V− 1 s− 1 and a carrier concentration of 1.95 × 1020 cm− 3. All the films present a high transmittance of above 90% in the visible range. The optical band gap depends on the carrier concentration, and the value is larger at higher carrier concentration.  相似文献   

18.
Al-doped transparent conducting zinc oxide (AZO) films, approximately 20-110 nm-thick, were deposited on glass substrates at substrate temperatures between 200 and 300 °C by pulsed laser deposition (PLD) using an ArF excimer laser (λ = 193 nm). When fabricated at a substrate temperature of 260 °C, a 40-nm-thick AZO film showed a low resistivity of 2.61 × 10− 4 Ω·cm, carrier concentration of 8.64 × 1020 cm− 3, and Hall mobility of 27.7 cm2/V·s. Furthermore, for an ultrathin 20-nm-thick film, a resistivity of 3.91 × 10− 4 Ω·cm, carrier concentration of 7.14 × 1020 cm− 3, and Hall mobility of 22.4 cm2/V·s were obtained. X-ray diffraction (XRD) spectra, obtained by the θ-2θ method, of the AZO films grown at a substrate temperature of 260 °C showed that the diffraction peak of the ZnO (0002) plane increased as the film thickness increased from 20 to 110 nm. The full-width-at-half-maximum (FWHM) values were 0.5500°, 0.3845°, and 0.2979° for film thicknesses of 20, 40, and 110 nm, respectively. For these films, the values of the average transmittance in visible light wavelengths (400-700 nm) were 95.1%, 94.2%, and 96.6%, respectively. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) observations showed that even the 20-nm-thick films did not show island structures. In addition, exfoliated areas or vacant and void spaces were not observed for any of the films.  相似文献   

19.
Wide band gap InGaZn6O9 films of thickness ~ 350 nm were deposited on sapphire (0001) at room temperature by using the pulsed laser deposition technique. The transparent films showed the optical transmission of > 80% with the room temperature Hall mobility of ~ 10 cm2/V s and conductivity of 4 × 102 S/cm at a carrier density > 1020 cm− 3. The electrical properties as a function of deposition temperatures revealed that the conductivity and mobility almost retained up to the deposition temperature of 200 °C. The films annealed in different atmospheres suggested oxygen vacancy plays an important role in determining the electrical conductivity of the compound. Room temperature grown heterostructure of n-InGaZn6O9/p-SiC showed a good rectifying behavior with a leakage current density of less than 10− 9 A/cm2, current rectifying ratio of 105 with a forward turn on voltage ~ 3 V, and a breakdown voltage greater than 32 V.  相似文献   

20.
Polycrystalline GaxIn1 − xAs films with x ranging from 0 to 1 were deposited on glass substrates by molecular-beam deposition at 240 or 350 °C. Room temperature Hall-effect measurements showed that the GaxIn1 − xAs films deposited at either temperature exhibit high electron concentrations in the range of 1018 cm− 3 for x ≤ 0.21 while the electron concentration decreases with increasing Ga content for x ≥ 0.29 to be < 1015 cm− 3 at x = 0.64. Even at the low deposition temperature of 240 °C, the electron mobility remains > 400 cm2/(V s) at x ~ 0.2 and then decreases with Ga content to be ~ 40 cm2/(V s) at x = 0.64. Temperature-varying Hall-effect measurements in the range of 100-390 K revealed that both the electron concentration and mobility of the samples with x ≤ 0.21 are almost independent of the measurement temperature, while those of the samples with x ≥ 0.30 decrease with decreasing measurement temperature. The concentrations and ionization energies of donor levels were deduced from the temperature dependence of the electron concentration with the non-parabolicity of the conduction band taken into account. The temperature dependences of electron mobility in the samples with x ≥ 0.30 are well explained in terms of thermionic electron emission across the grain-boundary barriers assuming fluctuation in potential barrier height, while the almost temperature-independent high electron mobilities in the samples with x ≤ 0.21 are attributed to the absence of potential barrier at the grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号