首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mechanical load can drastically affect the properties of orthopedic implant materials. Damage of these materials usually occurs in contact surfaces, caused by abrasion, adhesion, fretting, delamination, pitting and fatigue depending on friction, lubrication, contact area, surface finish and level of loads (stresses).Carbon-based films are biocompatible with good bearing capacity, wear resistance, corrosion resistance and have a low coefficient of friction. However, great intrinsic stress prevents their wider application, mainly as implant coatings. To reduce this undesirable effect special deposition procedures are under development and/or the films are doped with suitable elements. It must be emphasized that DLC is not a material but a group of materials with a variety of properties. The relationships between the fretting wear behavior and mechanical properties of films based on carbon deposited by DC using the pulsed arc discharge PVD nitrogen doped (a-C) and the filtered pulsed arc discharge deposition system (ta-C) were tested.The composition of carbon films (sp3, sp2) was determined by Raman spectroscopy. Mechanical properties of elastic modulus and hardness were determined by a NanoTest apparatus with diamond Berkovich tip using the Oliver-Pharr procedure and adhesion was measured by nanoscratch tests. Tribological behavior was analyzed by fretting tests with a corundum ball under dry sliding lubricated conditions.The good performance of the hard carbon coatings is often discussed. Results from this study of fretting and the associated lubrication (bovine serum) show that ta-C coatings, despite their high hardness, have very low friction coefficients and low volume losses.  相似文献   

2.
Arc deposition with reduced defect growth Classical hard coatings such as nitrides, oxides or carbon coatings are normally used in a thickness range of under 10 microns. The preparation of such coatings can properly be handled in industry. They are used for wear resistant coatings of tools and components. The preparation of thicker coatings is a demanding task. Most of the coating materials have a high level of intrinsic stress. Also an inhomogeneous film structure can be observed in many cases, caused by growth defects or particles. This problem can be solved by a special layer design or a well adjusted coating process. The homogeneity of these coatings was demonstrated by a subsequent treatment by grinding. So a lot of new applications will become possible.  相似文献   

3.
4.
D. Rats  V. Hajek  L. Martinu   《Thin solid films》1999,340(1-2):33-39
Advanced optical applications require multifunctional coatings with specific mechanical properties, such as resistance to damage and good adhesion to different types of substrates, including polymers. In the present study we deposited amorphous hydrogenated silicon nitride (SiN1.3) and oxide (SiO2) films on polycarbonate and on silicon substrates by plasma enhanced chemical vapor deposition (PECVD), using a dual-mode microwave/radio frequency plasma system. The film adhesion was determined by the micro-scratch test. Depth-sensing indentation and substrate curvature measurements were used to evaluate the microhardness. Young's modulus and residual stresses of the films. The adhesion strength, represented by the critical load, Lc, when the film starts to delaminate, was determined as a function of the substrate material and the energy of bombarding ions. A direct correlation between the Lc values and the mechanical properties of the films was found. The formation of different crack patterns in the coatings during the scratch procedure is explained in terms of stress release mechanism depending on the mechanical properties of the film, the substrate and the interface region. In addition, different models applicable to the evaluation of the work of adhesion in the case of hard coatings on soft substrates are critically reviewed.  相似文献   

5.
HPPMS high‐performance plasmas for the deposition of diamond‐like carbon coatings Diamond‐like carbon (DLC) coatings Diamond‐like carbon (DLC) coatings can be used in many different applications, due to their adjustable properties like hardness as wear reduction. Regarding to the synthesis of these coatings, research is upon the High Power Pulsed/Impulse Magnetron Sputtering (HPPMS/HiPIMS), which in contrast to conventional processes like the Pulsed Laser Deposition (PLD) provides smooth coatings and therefore less postprocessing. Previous to the coating deposition in‐situ plasma analysis can be utilized to identify the process parameters. The aim relevantof this work was to identify process parameters which enable to generate a high amount and energy of carbon ions, which are required to synthesize hard DLC coatings. Regarding to the carbon ionization the promising process parameters mixture and pressure of the process gas as well as the HPPMS pulse parameters were varied. Finally, process parameters for the DLC coating deposition could be derived from these investigations.  相似文献   

6.
Nanocomposite coatings on CBN‐tools CBN (cubic boron nitride) cutting materials are often used to improve the properties of cutting tools. This allows new applications and processes, which are not possible with common cutting materials (e.g. hard metals). Today CBN cutting materials are mostly coated to estimate the wear by an optical evaluation. Coatings on CBN cutting materials for enhancement of the tribological properties are normally not used. For improvement of the properties of used CBN tools during the cutting process a coating technology was developed. This technology combines the advantages of CBN cutting materials with the excellent properties (e.g. hardness, temperature stability) of nanostructured materials. Investigations with different coating systems and pre‐treatment processes were done to test the CBN cutting tools. These investigations have been shown, that nanocomposite coatings can be used to enhance the tool life of CBN cutting tools. Important for an increase in the tool life is a very good coating adhesion, which can be reached by special adhesion layers and an optimized coating structure.  相似文献   

7.
Diamond-like carbon films have unique properties for biological and medical applications due to their excellent biocompatibility, chemical inertness, and superior mechanical properties. In order to attend biomedical applications, there is an increasing interest in developing antibacterial coatings. In this paper, we investigated the bactericidal properties of diamond-like carbon films produced using plasma enhanced chemical vapor deposition. The films were deposited over 316L stainless steel substrates using a pulsed directly current discharge of methane gas. Diamond-like carbon structural quality was evaluated using Raman scattering spectroscopy. The bacterial adhesion and bactericidal activity of the coating was evaluated against Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, Salmonella typhimurium ATCC 14028 and Staphylococcus aureus ATCC 25923. These tests show diamond-like carbon bactericidal activity ranged between 25 and 55%, depending on the kind of bacteria. The bacterial adhesion on diamond-like carbon surface was influenced by its structure, chemical bonds and hydrogen content. The low surface roughness did not have decisive effect on its antibacterial performance.  相似文献   

8.
Growth defects in PVD hard coatings   总被引:2,自引:0,他引:2  
P. Panjan  M. ?ekada  M. Panjan  D. Kek-Merl 《Vacuum》2009,84(1):209-2921
In PVD coatings, various growth defects typically appear during the deposition. Such defects are drawbacks in coating application. In order to improve the tribological properties of PVD hard coatings it is important to minimize the defect density. Various PVD hard coatings were prepared by evaporation using a thermionic arc and by sputtering using unbalanced magnetron sources. Coating topography was analyzed using a 3D stylus profilometer and other analytical techniques (SEM, FIB). We studied the influence of different types of substrate materials, the substrate position in the vacuum chamber, pre-treatment and deposition parameters on defect density.  相似文献   

9.
A new group of thin film metallic glasses (TFMGs) have been reported to exhibit properties different from conventional crystalline metal films, though their bulk forms are already well-known for high strength and toughness, large elastic limits, and excellent corrosion and wear resistance because of their amorphous structure. In recent decades, bulk metallic glasses have gained a great deal of interest due to substantial improvements in specimen sizes. In contrast, much less attention has been devoted to TFMGs, despite the fact that they have many properties and characteristics, which are not readily achievable with other types of metallic or oxide films. Nevertheless, TFMGs have been progressively used for engineering applications and, thus, deserve to be recognized in the field of thin film coatings. This article will thus discuss both properties and applications of TFMGs including a review of solid-state amorphization upon annealing, the glass-forming ability improvement due to thin film deposition, and mechanical properties, including residual stress, hardness and microcompression, adhesion, and wear resistance. Potential applications and simulations will also be discussed.  相似文献   

10.
Superhard carbon film deposition by means of Laser‐Arco® on the way from the Laboratory into the industrial series coating Diamond‐like carbon films (DLC) are more and more applied as wear protection coatings for components and tools due to their unique combination of high hardness, low friction and sticking tendency to metallic counter bodies. Up to now applied DLC films are hydrogen containing (a‐C:H) or metal carbon films (Me‐C:H) deposited by a plasma assisted CVD process from carbon‐hydrogen gas mixtures. Their wide industrial effort results from that the can be deposited with slowly modified coating machines for classical hard coating (e.g. TiN or CrN). A new generation DLC films are the hydrogen‐free ta‐C films (ta‐C = tetrahedral bounded amorphous carbon) with a between two and three‐times higher hardness and with a resulting higher wear resistance under extreme condition than classical DLC films. They have excellent emergency running properties at lubrication break down. Their industrial application is more difficult due to that they cannot deposited with modified coating machines for classical hard and DLC coating and a new technology with corresponding equipment was not available up to now. The laser controlled, pulsed arc deposition technology (Laser‐Arco®) of the Fraunhofer IWS Dresden has this potential. In kind of a Laser‐Arc‐Module‐source the ta‐C film deposition can be integrated in every industrial used deposition machine.  相似文献   

11.
Carbon based multilayer systems for highly loaded forming tools Amorphous hydrogenated carbon (metal‐free a‐C:H and metal‐containing a‐C:H:Me) films respond very sensitively to local overloads. For example during forming tool operations, hard abrasive particles and locally high stresses on the coating surface can cause crack initiation and early coating failure. Compared to the high hardness, wear resistance and excellent friction properties, in many cases the adhesion of a‐C:H films is relatively insufficient. Adhesion and overload resistance of a‐C:H and a‐C:H:Me, prepared by reactive sputtering, can be influenced in a wide range by different interlayer systems. In the present report the wear mechanism of amorphous carbon coatings and the influence of different metallic, metal nitride and metal carbide interlayers on the growth structure, the adhesion and the load resistance will be reported. Two well adapted multi‐coating systems, successfully tested for highly loaded tools and components, will be presented.  相似文献   

12.
Carbon films are distinguished by their special properties and the broad structural spectrum. Amorphous carbon films with dominating tetragonal bonds (ta‐C films) represent a high potential for tribological applications by their combination of superhardness and low adhesion. With the pulsed vacuum arc methods there are now industrial technologies available for the deposition of these promising protective coatings.  相似文献   

13.
Deposition Techniques for Transparent Conducting Thin‐Films on Glass and Polymer Substrates We report on thin films deposited at atmospheric pressures on glass and polymer substrates with various techniques. The introduced thin‐film materials show intrinsic properties being suitable for different applications while maintaining the principle properties of the substrates themselves (e. g. shape. rigidity/flexibility, transparency). With the main focus on optical and electronic applications the properties of the deposited films can be adjusted by the choice of coating material (e. g. metal oxide, CNT), the film's shape (compact, particulate) and the deposition process itself. We compare deposition and properties of different TCO‐materials with CNT‐based thin film techniques and demonstrate approaches for the integration of these processes in production lines.  相似文献   

14.
《Vacuum》1999,52(1-2):125-131
The Closed Field Un-Balanced Magnetron Sputter Ion Plating (CFUBMSIP) process is now routinely used in a production environment and is characterised by a high degree of flexibility in terms of the substrates and coating materials which can be used. Compared to classical magnetron sputtering the closed field system produces higher ion current density which gives high quality coatings and excellent adhesion. The ability to vary the deposition parameters over a wide range, permits the modification of not only the composition and the structure but also the morphology (density and growth mode) of the films. This paper describes, that in particular, a range of carbon coatings from transparent, electrically insulating to black, conductive coatings, can be produced. Tribological tests concerning adherence, hardness and wear properties in atmospheric and lubricated conditions are presented. The effects of the nature of the substrates with different hardness properties (M42, stainless steel and Al) are investigated.  相似文献   

15.
Chemical vapour deposition of coatings   总被引:6,自引:0,他引:6  
Chemical Vapour Deposition (CVD) of films and coatings involve the chemical reactions of gaseous reactants on or near the vicinity of a heated substrate surface. This atomistic deposition method can provide highly pure materials with structural control at atomic or nanometer scale level. Moreover, it can produce single layer, multilayer, composite, nanostructured, and functionally graded coating materials with well controlled dimension and unique structure at low processing temperatures. Furthermore, the unique feature of CVD over other deposition techniques such as the non-line-of-sight-deposition capability has allowed the coating of complex shape engineering components and the fabrication of nano-devices, carbon-carbon (C-C) composites, ceramic matrix composite (CMCs), free standing shape components. The versatility of CVD had led to rapid growth and it has become one of the main processing methods for the deposition of thin films and coatings for a wide range of applications, including semiconductors (e.g. Si, Ge, Si1-xGex, III-V, II-VI) for microelectronics, optoelectronics, energy conversion devices; dielectrics (e.g. SiO2, AlN, Si3N4) for microelectronics; refractory ceramic materials (e.g. SiC, TiN, TiB2, Al2O3, BN, MoSi2, ZrO2) used for hard coatings, protection against corrosion, oxidation or as diffusion barriers; metallic films (e.g. W, Mo, Al, Au, Cu, Pt) for microelectronics and for protective coatings; fibre production (e.g. B and SiC monofilament fibres) and fibre coating. This contribution aims to provide a brief overview of CVD of films and coatings. The fundamental aspects of CVD including process principle, deposition mechanism, reaction chemistry, thermodynamics, kinetics and transport phenomena will be presented. In addition, the practical aspects of CVD such as the CVD system and apparatus used, CVD process parameters, process control techniques, range of films synthesized, characterisation and co-relationships of structures and properties will be presented. The advantages and limitations of CVD will be discussed, and its applications will be briefly reviewed. The article will also review the development of CVD technologies based on different heating methods, and the type of precursor used which has led to different variants of CVD methods including thermally activated CVD, plasma enhanced CVD, photo-assisted CVD, atomic layer epitaxy process, metalorganic assisted CVD. There are also variants such as fluidised-bed CVD developed for coating powders; electrochemical vapour deposition for depositing dense films onto porous substrates; chemical vapour infiltration for the fabrication of C-C composites and CMCs through the deposition and densification of ceramic layers onto porous fibre preforms. The emerging cost-effective CVD-based techniques such as electrostatic-aerosol assisted CVD and flame assisted CVD will be highlighted. The scientific and technological significance of these different variants of CVD will be discussed and compared with other vapour processing techniques such as Physical Vapour Deposition.  相似文献   

16.
Supersonic cold spraying is an emerging technique for rapid deposition of films of materials including micrometer-size and sub-micrometer metal particles, nanoscale ceramic particles, clays, polymers, hybrid materials composed of polymers and particulates, reduced graphene oxide (rGO), and metal–organic frameworks. In this method, particles are accelerated to a high velocity and then impact a substrate at near ambient temperature, where dissipation of their kinetic energy produces strong adhesion. Here, recent progress in fundamentals and applications of cold spraying is reviewed. High-velocity impact with the substrate results in significant deformation, which not only produces adhesion, but can change the particles' internal structure. Cold-sprayed coatings can also exhibit micro- and nanotextured morphologies not achievable by other means. Suspending micro- or nanoparticles in a liquid and cold-spraying the suspension produces fine atomization and even deposition of materials that could not otherwise be processed. The scalability and low cost of this method and its compatibility with roll-to-roll processing make it promising for many applications, including ultrathin flexible materials, solar cells, touch-screen panels, nanotextured surfaces for enhanced heat transfer, thermal and electrical insulation films, transparent conductive films, materials for energy storage (e.g., Li-ion battery electrodes), heaters, sensors, photoelectrodes for water splitting, water purification membranes, and self-cleaning films.  相似文献   

17.
Abstract

Carbon fibre reinforced aluminium exhibits poor resistance against electrochemical corrosion in 3·5 wt-%NaCl solution. Diamondlike carbon (DLC) coatings provide properties which make them interesting materials for external corrosion protection on metal matrix composites (MMCs). The electrochemical corrosion behaviour of uncoated and DLC coated carbon fibre reinforced aluminium was tested in 3·5 wt-%NaCl solution. It has been found that the pitting potential is shifted significantly in the anodic direction and the corrosion current density is much lower due to the presence of the sealing DLC coating. Additionally, scratch tests and SEM studies were carried out in order to characterise the adhesion of the DLC films on the heterogeneous MMCs. Reliable corrosion protection is connected with sufficient coating durability under loading. In order to ensure sufficient loading capacity of the DLC coating under tribological conditions, wear tests were undertaken which revealed a considerable improvement in wear resistance due to deposition of the DLC coatings.  相似文献   

18.
V.F. Neto  M.S.A. Oliveira  N. Ali  J. Grácio 《Vacuum》2008,82(12):1346-1349
The mould making industry is known to be worldwide in rapid expansion, due to the fact that polymeric based materials are increasingly replacing conventional used ones, thus placing enormous challenges on production methods and tools.The application of chemical vapour deposition (CVD) diamond coatings onto moulds can be a promising tool to improve properties such as adhesion, reduction on abrasion and corrosive wear, filling and releasing problems or even tool thermal fatigue. Despite its potential for use in these types of applications, diamond coating on steel substrates is not problem-free and a few critical problems such as adhesion to steel, process temperatures and film property control, remain to be solved.This paper reports on experimental results obtained from an investigation focusing on the deposition of diamond coatings onto steel substrates using the new time-modulated chemical vapour deposition process. Furthermore, the technique is evaluated in order to establish its suitability for application in mould production tools.  相似文献   

19.
PVD protective coatings for precision molding tools Precision glass molding (PGM) is a replicative hot forming process for the production of complex optical components, such as aspherical lenses for digital and mobile phone cameras or optical elements for laser systems. The efficiency and thus also the profitability of the PGM depend on the unit price per pressed component, which correlates primarily with the service lifetime of the pressing tools. To increase tool lifetime, the tool surfaces are coated with protective coatings based on precious metals or carbon using physical vapour deposition (PVD). The PVD coating technology enables the deposition of thin coatings, which also follow more complex surface geometries and achieve a high surface quality. PVD coatings are also commonly used to protect tools from wear and corrosion. This paper presents two chromium‐based nitride hard coatings produced by an industrial PVD unit and investigated for their applicability for PGM. Two different coating architectures were implemented, on the one hand a single coating chromium aluminium nitride (Cr,Al)N coating and on the other hand a nanolaminar CrN/AlN coating with alternating layers of chromium nitride and aluminium nitride. The latter is a coating consisting of hundreds of nano‐layers, only a few nanometers thick. Both coatings, (Cr,Al)N and CrN/AlN, each have a thickness of s ~ 300 nm in order to follow the tool contour as closely as possible. The properties of the coating systems, which are of particular relevance for PGM, are considered. These include on the one hand the adhesion of glass, the roughness and topography of the surface and the adhesion between the coating and the tool material. In addition, the barrier effect of the coatings against diffusion of oxygen was investigated. In order to reproduce the thermal boundary conditions of the PGM, thermocyclic aging tests are performed and their influence on the different properties is described.  相似文献   

20.
To combat the high residual stress problem in monolayer diamond-like carbon coatings, this paper fabricated multilayer diamond-like carbon coatings with alternate soft and hard layers via alternating bias during magnetron sputtering. The surface, cross sectional morphology, bonding structures and mechanical properties are investigated. The atomic force microscopy images indicate low bias results in rougher surface with large graphite clusters and voids suggesting low coating density. The multilayered coatings demonstrate relatively smooth surface stemming from higher bias. The cross sectional images from field emission scanning electron microscopy indicate coating thickness decreases as substrate bias increases and confirm that higher bias results in denser coating. Delamination is observed in monolayer coatings due to high residual stress. The trend of sp3/sp2 fraction estimated by X-ray photoelectron spectroscopy is consistent with that of ID/IG ratios from Raman spectra, indicating the change of bonding structure with change of substrate bias. Hardness of multilayer diamond-like carbon coating is comparable to the coatings deposited at low constant bias but the adhesion strength and toughness are significantly improved. Alternately biased sputtering deposition provides an alternative when combination of hardness, toughness and adhesion strength is needed in an all diamond-like carbon coating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号