首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文研究了不同热处理工艺对5CrNiMo 钢的组织与性能的影响。结果表明,当淬火温度高于900℃时,其马氏体形态是以板条状为主;当回火温度高于450℃时,随着淬火温度的提高,钢的断裂韧性有明显的提高,其室温、高温冲击韧性略有下降。锻模在950~1000℃加热淬火,再高于450℃回火,比传统的热处理后有更好的强韧性。试验结果还表明,此钢臭氏体化后在230℃、280℃等温淬火后获得下贝氏体组织;回火下贝氏体比上贝氏体有较高的断裂韧性、冲击韧性和强度,在230℃等温淬火再500℃经回火后,它的强韧性还优于回火马氏体组织。因此,5CrNiMo 钢热锻模应获得回火板条状马氏体、回火下贝氏体或二者的复合组织为宜。  相似文献   

2.
本文研究了热处理工艺对Cr17Ni2钢组织和性能的影响。试验结果表明,Cr17Ni2钢经1050~1150℃淬火,300~450℃回火,可获得高强度、高韧性,其中1100℃淬火效果最好。考虑引耐蚀性,回火温度选择300~340℃较为合适。经500℃以上回火的Cr17Ni2钢,临界区热处理有高的冲击韧性,能抑制回火脆性,获得良好的强韧性配合。对经高温回火的Cr17Ni2钢,临界区热处理是理想的工艺。  相似文献   

3.
研究C90油井管调质后的组织与性能。结果表明,钢的组织主要由回火屈氏体与回火索氏体组成。且随回火温度的升高,回火屈氏体含量降低,回火索氏体含量增加,第二相粒子析出增加。钢的屈服强度与抗拉强度随回火温度的升高而降低。试验钢的抗腐蚀性能随回火温度的升高而增强,随浸泡时间增加而降低。C90的最佳热处理工艺为:870℃淬火,650℃回火。  相似文献   

4.
用金相显微镜、SEM电镜、拉伸试验及冲击试验等研究不同热处理工艺对40Cr钢微观组织与力学性能的影响。在微观组织上,不同热处理工艺的主要微观金相组织为回火索氏体且晶粒度等级为9级,而经亚温淬回火后还出现了铁素体。在力学性能上:860°C淬火+600°C回火工艺有利于提高40Cr钢的硬度、屈服强度及抗拉强度性能;860°C淬火+600°C回火+770°C亚温淬火+600°C回火可提高40Cr钢伸长率、断面收缩率和冲击韧性性能;对退火40Cr钢进行770°C亚温淬火+600°C回火后,钢的塑性和冲击韧性比淬回火+亚温淬回火差,硬度、屈服强度及抗拉强度比淬回火性能差。研究结果表明:淬回火可提高40Cr钢硬度和强度性能,淬回火+亚温淬回火可提升40Cr钢冲击韧性和塑性性能。  相似文献   

5.
为得到热处理工艺对27SiMn钢显微组织及力学性能的影响,制定了9种热处理工艺,并对其进行显微组织观察和力学性能测试.实验结果表明,27SiMn钢淬火+回火后的显微组织与回火温度和时间有关,当回火温度低、时间短时,显微组织为回火屈氏体+马氏体;当回火温度高、时间长时,显微组织为回火屈氏体+回火索氏体.同时,回火温度和时间对27SiMn钢的力学性能有很大影响,当回火温度为450℃,时间为45 min时力学性能最高,抗拉强度为1 175 MPa。当热处理温度为490℃,时间为75 min时力学性能最差,抗拉强度为975 MPa.综合分析27SiMn钢热处理最优工艺为900℃淬火+475℃回火75 min。  相似文献   

6.
本文研究了热模具钢H13(4Cr5MoSiV1)经不同热处理工艺处理后的显微组织和性能,结果表明,H13钢经软氮化处理后,耐磨性,热疲劳抗力较好而冲击韧性较低,250℃等温淬火加回火处理后的冲击韧性最高,热疲劳抗力比政党淬火加回火处理的好,耐磨性较差,300℃等温淬火回火处理的冲吉韧性和疲劳抗力较低,据此,在受冲击载荷情况下,采用250℃等温淬火回火热处理工艺较好,受冲击载荷较小时,采用正常淬火加回火软氮化复合热处理工艺较好。  相似文献   

7.
采用金相显微镜、X线衍射(XRD)对不同热处理工艺的热冲压模具钢组织进行观察和分析,比较冲击韧性、硬度以及摩擦磨损性等性能,得到热冲压模具钢最优热处理工艺.研究表明:经过不同温度的热处理后,热冲压模具钢组织为回火马氏体和少量碳化物等,经过1 050℃淬火,560、585和560℃回火后模具钢的晶粒较细,提高了钢的整体强韧性,使其冲击韧性的平均值达到11.97 J/cm2,高于另外两种热处理工艺;经过1 030℃淬火,560、600和560℃回火后模具钢的平均维氏硬度(HV)为537.23;经过1 020℃淬火,560、600和560℃回火后模具钢的摩擦因数最小,耐磨性最好.DEFORM-3D软件模拟十字件拉深过程中,上模底端的圆角处以及底端圆角与侧棱交汇处的弧形曲面更容易发生磨损,下模上表面以及上端圆角与侧棱交汇处的弧形曲面更容易发生磨损.  相似文献   

8.
对GCr18Mo钢进行了淬火+回火及等温淬火热处理,并对不同热处理工艺下GCr18Mo钢的显微组织和硬度值进行了分析比较.通过分析实验结果得出:GCr18Mo钢经930℃淬火180℃回火后的硬度值低于经860℃淬火220℃回火后的硬度值,两种热处理的组织均为回火马氏体+碳化物+残余奥氏体.GCr18Mo钢在230℃等温淬火处理时,得到下贝氏体组织,其形态由单个细针转变到草丛堆状.GCr18Mo钢经930℃加热230℃等温130 min后的硬度值明显低于经870℃加热230℃等温30 min的硬度值.  相似文献   

9.
通过对低碳贝氏体钢的调质处理工艺试验,研究不同的淬火介质、淬火温度及回火温度对实验钢组织和性能的影响。结果表明:经过930℃加热保温并10min油淬后,再选取500℃回火70min,实验钢的微观组织为细小的块状铁素体基体上分布着均匀的碳化物。实验钢的硬度由未调质处理前的260.7HV提高到322.2HV。  相似文献   

10.
本通过对煤矿重载轮用钢15CrMn2SiMo渗碳后,进行不同的热处理工艺试验,研究热处理工艺对组织及机械性能的影响。结果表明:渗碳后及淬火前进行一次充分的高温回火处理十分必要,钢的韧性明显提高,合适的淬火温度为870℃,钢的屈服强度及冲击韧性都有所提高,接触疲劳性能及变曲强度也较好。  相似文献   

11.
对比研究淬火回火工艺及正火回火工艺对P80沉淀硬化塑料模具试验钢组织及硬度的影响。结果表明:20 mm方块试样淬火后得到马氏体组织,正火后得到马氏体与少量贝氏体组织;随着回火温度的提高,硬度先升高后降低,500℃回火时硬度最高,但淬火回火试样的最高硬度(45 HRC)高于正火回火试样(42 HRC);100 mm方块试样在淬火加500℃回火后主要是板条回火马氏体组织,硬度范围为42~45 HRC,平均硬度为44 HRC;正火加500℃回火后主要是板条贝氏体组织,硬度范围为39~43 HRC,平均硬度为41 HRC。实际生产中采用热轧控冷加回火工艺生产P80的厚钢板能够满足用户的硬度要求。  相似文献   

12.
采用金相观察、硬度测试、冲击和拉伸试验,研究了不同水浴淬火及回火工艺对Q235钢强韧化的影响。结果表明,Q235钢经水浴淬火工艺的淬火态、180℃回火态的硬度及强度低于完全淬火后的淬火态、180%回火态的硬度和强度。但是,经20℃、100℃两次水浴淬火、180℃回火的冲击韧性高于60℃水浴淬火和完全水浴淬火两种工艺。对于Q235钢,在满足强度要求的前提下,20℃×4 s、100℃×30 min两次水浴淬火、180℃回火的热处理工艺能很好的改善其冲击韧性。  相似文献   

13.
4Cr5MoSiV1热处理工艺及组织的研究   总被引:1,自引:0,他引:1  
研究了显象管玻壳模具用 4Cr5MoSiV1钢的不同热处理工艺下的组织与硬度的关系 ,特别是回火温度与硬度的关系 ,提出了预备热处理采用 1 1 0 0℃淬火 ,82 0℃回火的调质处理替代退火处理 ,随后经 1 0 2 0℃淬火 ,780~80 0℃× 4h回火 2次 ,并改善炉内温度分布状况 ,可得到较为均匀理想的组织和性能  相似文献   

14.
研究淬回火热处理工艺对高硫钢的基体组织和硫化物形态的影响,分析了其力学性能和磨损性能。结果表明,热处理后高硫钢中硫化物主要为FeS,其形态趋于球化;淬火温度由880℃升至900℃,高硫钢的抗拉强度由460MPa提高到590MPa,伸长率由1.7%变化到3.0%,但其仍为脆性材料,这与组织中合有大量硫化物有关;由于硫化物的自润滑作用,热处理后高硫钢的耐磨性随连续磨损时间的延长而改善,并明显优于淬火后低温回火的GCr15钢。  相似文献   

15.
通过对低合金耐磨钢热处理工艺试验.研究了不同淬火和回火温度对材料组织和性能的影响.结果表明:经过920℃/30min水淬+260℃/2h回火处理后,试样晶粒细小,组织为板条马氏体、碳化物和少量残余奥氏体,并具有最佳的冲击韧性和硬度.  相似文献   

16.
研究40Cr钢在不同热处理工艺下的组织和耐磨性.结果表明:40Cr最佳的热处理工艺为经850 ℃保温60 min正火,试样硬度约为200 HBS,正火后组织为索氏体;再经780 ℃淬火保温30 min后水冷,试样硬度约为52 HRC,淬火所得组织为板条状马氏体和针状马氏体;最后经200 ℃低温回火后,试样硬度维持在50 HRC以上,所得组织为回火马氏体;经淬火及回火后,试样耐磨性得到显著提高.  相似文献   

17.
研究了热处理工艺对35NCD16合金钢组织和性能的影响,采用金相显微镜、扫描电镜、拉伸实验、硬度实验等设备及实验方法对875℃淬火,550℃、560℃、570℃和580℃不同温度回火后的材料进行组织观察和性能测试,分析其显微组织和力学性能变化规律,从而得出最佳热处理工艺参数.实验结果表明:875℃淬火+高温回火能有效改善35NCD16合金钢的显微组织,在实验温度范围内,35NCD16钢于550℃、560℃发生二次硬化现象,尤以550℃更为显著,此时硬度、抗拉强度、延伸率达到最大值,分别为42.07 HRC、1 309 MPa和15.42%,断口呈微孔聚集型特征,大韧窝中分布着小韧窝;温度超过560℃,则出现过时效现象,580℃时硬度降至35.13 HRC,抗拉强度降至1 048 MPa,延伸率降至12.83%.因此,35NCD16合金钢的最佳热处理工艺为875℃淬火+550℃回火.  相似文献   

18.
对轧制态65Mn锯片用钢在740℃球化退火保温120 min后,分别在800~880℃范围内进行油淬并在370~450℃温度范围内进行回火处理.采用光学显微镜、万能力学性能试验机、冲击试验机及洛氏硬度计分别分析其金相显微组织、力学性能变化规律.结果表明:淬火组织为淬火马氏体+残余奥氏体;随着淬火温度的升高,淬火马氏体组织不断长大;硬度随淬火温度的升高由800℃的58 HRC逐渐提高到880℃的66 HRC.随着回火温度的升高,试样的组织由淬火马氏体逐渐转化为回火马氏体、回火马氏体+回火屈氏体组织,强度、硬度逐步降低,而塑性、韧性相应提高;在410℃附近出现了回火脆性.最佳热处理工艺为840℃(保温20 min)淬火+430℃(保温120 min)回火.  相似文献   

19.
研究了显象管玻壳模具用 4Cr5MoSiV1钢的不同热处理工艺下的组织与硬度的关系 ,特别是回火温度与硬度的关系 ,提出了预备热处理采用 1 1 0 0℃淬火 ,82 0℃回火的高质处理替代退火处理 ,随后经 1 0 2 0℃淬火 ,780 ,80 0℃× 4h回火 2次 ,并改善炉内温度分布状况 ,可得到较为均匀理想的组织和性能  相似文献   

20.
27SiMn钢的亚温淬火工艺研究   总被引:2,自引:0,他引:2  
研究了27SiMn钢的亚温淬火工艺,着重讨论了亚温区的淬火温度选择及预处理组织对该钢亚温淬火效果的影响.测试了各种状态的静强度和冲击韧性.通过高压透射电子显微镜对试验钢微观组织的观察分析,得出该钢的亚温淬火加热温度在860℃,原始状态以调质态时性能较好.从经济的观点出发,采用锻造后正火态+860℃淬火+550℃高温回火的亚温处理可代替920℃淬火+500℃回火的原调质工艺.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号