首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— A new method that can present fine depth increments in a stereoscopic display is proposed. In typical stereoscopic displays, depth can be presented by binocular disparity, but binocular disparity of less than one pixel cannot be displayed because, in general, electronic displays have discrete pixels. We combined binocular disparity and modulation of the edge luminance in DFD (depth‐fused 3D) displays. In an experiment, the perceived depth could be continuously changed by modulating the edge luminance only. Therefore, continuous depth can be produced by combining binocular disparity and modulation of edge luminance distribution.  相似文献   

2.
To give operators of high-speed, highly-manoeuvrable vehicles the ability to keep pace with their increasingly dynamic environment, stereoscopic 3-D displays may soon replace conventional 2-D displays. Important to the development of stereoscopic 3-D displays is the interaction of perceived depth created by hues (chromostereopsis) and perceived depth created by presenting different images of a single object to the left and right eye of the observer (stereopsis). The purpose of this research is to evaluate the interaction of chromostereopsis and stereopsis on a stereoscopic CRT by determining the level of accuracy with which subjects can properly interpret the relative depth differences of adjacent symbols containing six levels of hue and seven levels of stereoscopic disparity. This research demonstrated that hue, disparity, and the interaction of hue and disparity significantly influenced one's perception of depth on a stereoscopic monitor. The results suggest that caution should be exercised by the stereoscopic 3-D display format designer when choosing hues to represent images located in close proximity on a stereoscopic display. Due to the chromostereoscopic effect on the perception of depth, hues on extreme ends of the colour spectrum should not be used in situations where less than 3.39 arc minutes of disparity difference is being portrayed on a stereoscopic display, unless the hues are consistently being used to alter the depth presented by stereoscopic disparity, or the chromostereoscopic depth resulting from certain hues is consistently nullified by altering disparity levels accordingly.  相似文献   

3.
The threshold for binocular disparity for which a participant can observe a clear stereoscopic image on a 3D TV using Patterned Retarder technology and polarizing eyeglasses is determined for a viewing distance of 2.5 m. An optotype, the letter “m” with a line thickness of 1.08 mm in the upward or downward direction, was used as the stereoscopic stimulus. Under the measurement conditions of the increase and decrease of binocular disparity of the stereoscopic stimulus, the binocular disparity thresholds for 40 participants were measured for the horizontal direction. Most of the participants were in their twenties. The thresholds were measured to be slightly larger for the condition of increasing binocular disparity compared with the condition of decreasing binocular disparity. Personal differences were measured to be noticeable.  相似文献   

4.
This study investigates the permissible value of horizontal binocular disparity when gazing at a three-dimensional (3D) display based on ocular accommodation function. For the closely perceived image on the 3D display screen, the crossed disparity of +1.0° and of +0.5° were given and for the far image, which gave the image far away from the screen, the uncrossed disparities of ?1.0° and of ?0.5° were taken. The disparity was 0° when the image was displayed on the screen. When the disparity was +1.0° and the stereoscopic image had been perceived, the accommodative response became significantly larger in comparison to that at 0°. An accommodation lead was observed significantly at a disparity +1.0°. The tolerance of binocular disparity on the 3D display based on the physiological aspect of ocular accommodation is thus suggested to be less than +1.0°.  相似文献   

5.
目的 针对人眼观看立体图像内容可能存在的视觉不舒适性,基于视差对立体图像视觉舒适度的影响,提出了一种结合全局线性和局部非线性视差重映射的立体图像视觉舒适度提升方法。方法 首先,考虑双目融合限制和视觉注意机制,分别结合空间频率和立体显著性因素提取立体图像的全局和局部视差统计特征,并利用支持向量回归构建客观的视觉舒适度预测模型作为控制视差重映射程度的约束;然后,通过构建的预测模型对输入的立体图像的视觉舒适性进行分析,就欠舒适的立体图像设计了一个两阶段的视差重映射策略,分别是视差范围的全局线性重映射和针对提取的潜在欠舒适区域内视差的局部非线性重映射;最后,根据重映射后的视差图绘制得到舒适度提升后的立体图像。结果 在IVY Lab立体图像舒适度测试库上的实验结果表明,相较于相关有代表性的视觉舒适度提升方法对于欠舒适立体图像的处理结果,所提出方法在保持整体场景立体感的同时,能更有效地提升立体图像的视觉舒适度。结论 所提出方法能够根据由不同的立体图像特征构建的视觉舒适度预测模型来自动实施全局线性和局部非线性视差重映射过程,达到既改善立体图像视觉舒适度、又尽量减少视差改变所导致的立体感削弱的目的,从而提升立体图像的整体3维体验。  相似文献   

6.
Our previous research highlighted adverse visual effects after wearing a binocular head-mounted display (HMD) for a 10 min stereoscopic visualization task. We have since proposed a theoretical, explanation based on the conflict between the depth. Such cues presented by image disparity and image focal depth. Such conflict, however, is not evident in all HMD configurations, and we replicated our early trials using a new-generation bi-ocular HMD produced by Virtuality Entertainment Ltd. Using similar, conventional optometric procedures with 50 participants, we observed no problems in the use of this display for immersion periods of to 30 min. This study demonstrates that effective HMDs can be produced through careful design and precision engineering. It also suggests a difference between the presentation of binocular and bi-ocular images and the requirements that they place on the visual system. Factors to consider in the future development of binocular displays are discussed.  相似文献   

7.
Abstract— In this paper, the relative influences of misalignment such as cross‐talk, vertical shift, and motion blur on visual fatigue by using a binocular stereoscopic display has been verified. Experiments were conducted for two cases: a still image and a motion image. They were evaluated by using the simulator sickness questionnaire (SSQ). By changing the disparity angle, cross‐talk, and vertical shift in the still‐image experiment, it was found that the SSQ score of each parameter increased as the amount of each factor increased. With a two‐sample t‐test between the presence and absence of each factor, a significant difference was found for the case of a more than 36‐arcmin disparity, more than 20% cross‐talk, and more than 10% vertical shift. In the motion‐image experiment, in which motion speed and the misalignment were varied, it was found that movement of the disparity angle caused much more visual fatigue in comparison with the misalignment factors, which were cross‐talk and vertical shift. In contrast, motion images in addition to the cross‐talk and/or vertical shift had a slight but unnoticeable relationship to an increase in visual fatigue. Therefore, it was concluded that vertical shift dominated the evaluation for still images, and the movement itself dominated the evaluation for motion images. The results suggest that it is necessary to evaluate visual fatigue according to the representing case, still or motion images, of a 3‐D stereoscopic display.  相似文献   

8.
In this paper, we present an effective disparity mapping method for binocular stereoscopic image. It is inspired by the observation that its displayed depth would change, when a stereoscopic image is displayed on different size screens. The phenomenon may bring an uncomfortable experience for viewers. To make a comfortable stereoscopic image for viewers, moreover to adapt a stereoscopic image to a target display screen, we propose a content-aware disparity adjustment method. Firstly, the disparity mapping is established to control and retarget the depth of a stereoscopic scene. Then, the relationship between the disparity editing and image content editing is established to guide the proposed warping model. At last, to implement the disparity mapping operator, we propose a content-aware stereoscopic mesh warping model, which can simultaneously avoid the salient region distortion and adjust disparity to a target range by establishing the relationship. Experimental results show that the proposed method can effectively adjust disparity of stereoscopic image, which not only avoids the salient region distortion and adjusts disparity to a target range.  相似文献   

9.
Limits of fusion and depth judgment in stereoscopic color displays   总被引:2,自引:0,他引:2  
The effective use of stereoscopic display systems is dependent, in part, on reliable data describing binocular fusion limits and the accuracy of depth discrimination for such visual display devices. These issues were addressed in three experiments, as were the effects of interocular cross talk. Results showed that limits of fusion were approximately 27.0 min arc for crossed disparity and 24.0 min arc for uncrossed disparity. Subjects were extremely accurate in distinguishing the relative distance among four groups of stimuli, were able to identify a pair of stimuli colocated at the same depth plane within each group, and were fairly accurate in scaling stimuli along the depth dimension. The mean error in using disparity as a depth cue was approximately 2.2 min arc. Interocular cross talk had little effect on fusion limits for 200-ms stimulus presentations but significantly affected fusion for longer (2 s) presentations that enabled vergence responses to be executed. Depth discrimination performance was essentially unaffected by interocular cross talk; however, cross talk significantly influenced subjective ratings of image quality and visual comfort.  相似文献   

10.
Abstract— 3‐D cross‐talk typically represents the ratio of image overlap between the left and right views. For stereoscopic LCDs using shutter‐glasses technology, 3‐D cross‐talk for stereoscopic LCD TV with a diagonal size of 46 in. and vertical alignment (VA) mode was measured to change from 1% to 10% when the stereoscopic display is rotated around the vertical axis. Input signals consist of the left and right images that include patterns of different amounts of binocular disparity and various gray levels. Ghost‐like artifacts are observed. Furthermore, intensities of these artifacts are observed to change as the stereoscopic display is rotated about the vertical axis. The temporal luminance of the LCD used in stereoscopic TV was found to be dependent on the viewing direction and can be considered as one cause of the phenomenon of angular dependence of performance for stereoscopic displays.  相似文献   

11.
《Displays》2014,35(4):213-219
This paper presents a new three-dimensional (3-D) display that can display 3-D images at long distances of tens or hundreds of meters in the depth direction and that can control their 3-D positions to meet new requirements for outdoor use. The proposed display uses changing size as a cue to depth perception, i.e., the smoothly expanding motion of virtual images formed with optical systems according to the forward movements of the users to display 3-D images at more distant positions in the depth direction than positions where virtual images are formed with optical systems because conventional 3-D displays that use binocular disparity are only able to display 3-D images at short distances in the depth direction. The feasibility of the proposed display was evaluated by subjective tests using a moving minivan in which observers viewed a test pattern that overlapped the real view ahead of the automobile observed through the windshield. The results obtained from the subjective tests revealed that the test pattern was observed at long distances over tens and hundreds of meters in the depth direction and that the position in the depth direction of the test pattern could be controlled by changing the rate at which the motion of the test pattern smoothly expanded. These results demonstrated that the proposed display was feasible.  相似文献   

12.
Computer work is a visually demanding task associated with adverse eye symptoms. Frequent use of digital displays is known to cause a deterioration of the so-called binocular control. Direct glare further reduces the capacity for binocular coordination during computer work, leading to reduced reading ability and increased eye symptoms.The purpose of this study was to investigate the effect of different luminance levels of direct glare on binocular eye movement control and reading ability in a computer work environment.Sixteen participants with normal binocular vision performed equal reading tasks in a balanced study. Three controlled lighting conditions of direct glare (2000, 4000 and 6000 cd/m2) were tested, in addition to no glare. After each trial, the participants answered survey questionnaires regarding their understanding of the text, as well as their subjective experience of workload and perceived vision. Horizontal fixation disparity (FD) was measured before and after the reading tasks to evaluate binocular eye movement control.When comparing the responses of visual experience, a significant difference in reported eye symptoms was found between lighting conditions. Based on the variation (SD), a significant difference was found within mean values of repeated measurements of horizontal FD and a significantly higher variation in a comparison of initial FD values measured during lighting conditions of no glare, to final measured values in all three glare conditions. Reading ability was found to be significantly negative affected with the adversity of lighting conditions.This study supports the contention that binocular eye movement control is reduced caused by direct glare. Even lower degree of disability glare caused eye symptoms. The results establish the argument that working with flat screens raises visual demands.  相似文献   

13.
Abstract— Stereoscopic perception of tilt about a vertical or horizontal axis is influenced by size and shear disparities, respectively. Other researchers have reported that, under certain conditions, stereoscopic perception deficits occur when the dots in a random-dot stereogram move at a velocity that produces optokinetic nystagmus. Here we examine how size disparity and shear disparity affect stereoscopic tilt perception under various motion conditions. We hypothesized that visual stimulus motion may interact with these disparities to affect tilt perception. Our results indicate that shear disparity and size disparity effects under static conditions are maintained under motion conditions. A possible explanation for the conflict between the current and previous results is discussed, as are implications for binocular head-mounted display applications.  相似文献   

14.
If discrepancy between accommodation and convergence caused by a stereoscopic display exceeds fusion range of human eyes, viewers will see ghosting image, which leads to the loss of correct depth information and even causes severe visual fatigue. In this paper, an experiment aiming to investigate the binocular fusion range is conducted for a polarized 3D display. Two experimental trials are arranged to examine two aspects of fusion range including outward depth and inward depth. 3D modeling software is used to generate the test stereoscopic image pairs, which vary in depth by adjusting the separation between the virtual cameras. Angular parallax corresponding to the limit of fusion range is obtained by determining critical point of ghosting images. The experimental results show deviation between theoretical fusion range calculated by formula and experimental one.?0.223° to 0.275° represent critical fusion range for the polarized 3D display to avoid ghosting images.  相似文献   

15.
Although numerous potential causes may lead to visual discomfort when viewing content on three‐dimensional (3D) displays, vergence–accommodation conflict is a particular cause of binocular parallax‐based stereoscopic displays, and it is unavoidable. Based on the study of 3D content visual attention, we proposed a novel stereoscopic depth adjustment method to improve the visual comfort and enhance perceived naturalness. The proposed method combined the 3D image saliency and specific viewing condition to establish a novel model for computing the optimum zero‐disparity plane of stereoscopic image. The results of perception experiments, focused on visual comfort and stereoscopic sensation, supported that the proposed method can significantly enhance stereoscopic viewing comfort and even can improve the stereoscopic sensation by insuring the 3D image fusion.  相似文献   

16.
《Ergonomics》2012,55(11):1273-1279
This paper points out that the fusional limits of binocular stereoscopic viewing are an important factor, not only determining the reproduction range of stereoscopic images, but also the conformity between the stereoscopic display and stereoscopic vision. Experimental results showed that fusional limits increase in proportion to the field of view angle, and that they are affected not only by the size of the viewing target, but also by the effects that the environment has on the target. These findings explain the differences between binocular vision in real space and binocular vision in a stereoscopic display. Finally, the conditions under which observers arc able to view images of stereoscopic displays without excessive visual strain are discussed.  相似文献   

17.
Current 3D crosstalk equation was defined from the characteristics of 3D display using glasses. This equation is not suitable for multi‐view 3D display with larger view number as it gives the inappropriately large value. In 3D display using eyeglass, double images occur at large depth. But, in multi‐view 3D display with larger view number, blur occurs to larger width for the larger depth. Hence, blur phenomenon of multi‐view 3D display was investigated to understand the unique characteristics of multi‐view 3D display. For this purpose, ray tracing S/W was used to simulate 3D display image seen at the designed viewing distance, to calculate the relative luminance distribution, and to quantify the relation between blur and depth. Calculated results showed that incomplete image separation caused the overlap of multiple view images and the blur. Blur edge width (BEW) was proportional to the horizontal disparity and related to the depth. BEWR = (BEW) / (binocular disparity) was newly defined, and its usefulness for 3D characterization was investigated. BEW and BEWR might be useful as new measuring items to characterize multi‐view 3D display regarding 3D crosstalk.  相似文献   

18.
This paper proposes to employ multi-dimensional controller for driving LED backlight scanning in a 120 Hz LCD for overcoming the hold-type characteristic of an LCD in time-multiplexed stereoscopic displays. A synchronization signal circuit is developed to connect the time scheme of the vertical synchronization for reducing scanning time. The general strategy is to integrate 3D controller and all relatively small-signal electronic functions into one ASIC to minimize the total number of the components. The display panel, LED backlight scanning, and shutter glass signals could be adjusted by vertical synchronization and modulation to obtain stereoscopic images. Each row of LED in a backlight module is controlled by multi-dimensional data registration and synchronization control circuits for LED backlight scanning to flash in bright or dark. LED backlight scanning stereoscopic display incorporated with shutter glasses is provided to realize stereoscopic images even viewed in a liquid crystal display. The eye shutter signal is alternately switched from the left eye to the right eye with 120 Hz of LCD Vertical synchronization (V-sync). This kind of low cross-talk shutter glasses stereoscopic display with an intelligent multiplexing control of LED backlight scanning has low cross-talk below 1% through a liquid crystal shutter glasses.  相似文献   

19.
In observing the stereoscopic display at the viewing distance of 1 m, the amount of the perceived depth was determined by the positions of the crossing point that the viewing direction of two eyes intersect. The positions of the crossing points of stereoscopic stimuli were controlled, and the accommodation was measured by the autorefractometer for the seven participants. Accommodation was also measured when viewing the real film chart which was placed at the same position as these crossing points. The accommodation change when viewing the stereoscopic display was measured to be noticeable only when the crossing point was quite near the participant, but this change was still much smaller compared with the accommodation change when viewing the real film chart. This change in accommodation implies the possible occurrence of fatigue related to the accommodation–convergence conflict, while the constant accommodation within the range of DOF implies no conflict between the accommodation and convergence. This measurement scheme may be used to define the range of DOF where the accommodation remains little changed, and thus define the depth of the 3D object at which no accommodation–convergence conflict occurs, for a given stereoscopic display.  相似文献   

20.
针对先前的立体图像显著性检测模型未充分考虑立体视觉舒适度和视差图分布特征对显著区域检测的影响,提出了一种结合立体视觉舒适度因子的显著性计算模型.该模型在彩色图像显著性提取中,首先利用SLIC算法对输入图像进行超像素分割,随后进行颜色相似区域合并后再进行二维图像显著性计算;在深度显著性计算中,首先对视差图进行预处理;然后基于区域对比度进行显著性计算;最后,结合立体视觉舒适度因子对二维显著图和深度显著图进行融合,得到立体图像显著图.在不同类型立体图像上的实验结果表明,该模型获得了85%的准确率和78%的召回率,优于现有常用的显著性检测模型,并与人眼立体视觉注意力机制保持良好的一致性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号