首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— An integral floating display (IFD) with a long depth range without floating lens distortion is proposed. Two lenses were used to reduce barrel distortion of the floating lens and three‐dimensional (3‐D) image deformation from object‐dependent longitudinal and lateral magnifications in the floating‐display system, combined with an integral imaging display. The distance between the floating lenses is the sum of their focal lengths. In the proposed configuration, lateral and longitudinal magnifications are constant regardless of the distance of the integrated 3‐D images, so the distortions from the distant‐dependent magnifications of the floating lens do not occur with the proposed method. In addition, the proposed floating system expands the depth range of the integral imaging display. As a result, the display can show a correct 3‐D floating image with a large depth range. Experimental results demonstrate that the proposed method successfully displays a 3‐D image without floating lens distortions across a large depth range.  相似文献   

2.
Abstract— The jerkiness of moving three‐dimensional (3‐D) images produced by a high‐density directional display was studied. Under static viewing conditions in which subjects' heads did not move, jerkiness was more noticeable when moving 3‐D images were displayed in front of the display screen and was less noticeable when moving 3‐D images were displayed behind the screen. We found that the perception of jerkiness depended on the visual angular velocities of moving 3‐D images. Under dynamic viewing conditions in which subjects' heads were forced to move, when moving 3‐D images were displayed in front of the screen, jerkiness was less noticeable when the subjects' heads and 3‐D images moved in opposite directions and was more noticeable when they moved in the same direction. When moving 3‐D images were displayed behind the screen, jerkiness was less noticeable when subjects' heads and 3‐D images moved in the same direction and was more noticeable when they moved in opposite directions.  相似文献   

3.
Abstract— Several rare‐earth‐doped fluoride crystals that are excited to emit visible light by sequential two‐photon absorption have been investigated as display‐medium candidates for static volumetric three‐dimensional displays. Dispersion of powders of these materials in a refractive‐index‐matched polymer is reported because such a medium may result in a scalable display. The scattering problem in such a medium is greatly reduced by index‐matching the polymer to the crystalline particles. An index‐matching condition that optimizes the performance is identified.  相似文献   

4.
Abstract— A new approach to resolution enhancement of an integral‐imaging (II) three‐dimensional display using multi‐directional elemental images is proposed. The proposed method uses a special lens made up of nine pieces of a single Fresnel lens which are collected from different parts of the same lens. This composite lens is placed in front of the lens array such that it generates nine sets of directional elemental images to the lens array. These elemental images are overlapped on the lens array and produce nine point light sources per each elemental lens at different positions in the focal plane of the lens array. Nine sets of elemental images are projected by a high‐speed digital micromirror device and are tilted by a two‐dimensional scanning mirror system, maintaining the time‐multiplexing sequence for nine pieces of the composite lens. In this method, the concentration of the point light sources in the focal plane of the lens array is nine‐times higher, i.e., the distance between two adjacent point light sources is three times smaller than that for a conventional II display; hence, the resolution of three‐dimensional image is enhanced.  相似文献   

5.
This paper proposes a method for combining multiple integral three‐dimensional (3D) images using direct‐view displays to obtain high‐quality results. A multi‐image combining optical system (MICOS) is used to enlarge and combine multiple integral 3D images without gaps. An optical design with a simple lens configuration that does not require a diffuser plate prevents the deterioration in resolution resulting from lens arrangement errors and the diffuser plate. An experiment was performed to compare a previously developed method with the proposed method, and the latter showed a significant improvement in image quality. A method for expanding the effective viewing angle of the proposed optical design was also developed, and its effectiveness was confirmed experimentally. A prototype device of the proposed optical design was constructed using a high‐density organic light‐emitting diode (OLED) panel with 8K resolution and 1058 ppi pixel density to achieve 311 (H) × 175 (V) elemental images, a viewing angle of 20.6° in both the horizontal and vertical directions, and a display size of 9.1 in. In addition, the proposed optical design enabled making device considerably thinner, ie, with a thickness of only 47 mm.  相似文献   

6.
In this paper, we present an autostereoscopic 3D display based on the moiré effect. The left and right images are built of the moiré patterns. When observed from a proper location, these moiré images can be perceived stereoscopically without special eyeglasses. The principle is confirmed by preliminary experiments.  相似文献   

7.
Abstract— An improved 3‐D/2‐D switchable display system with enhanced depth and viewing angle by adding two LCD panels to an integral imaging system has been realized. The proposed system uses the see‐through property of an LCD panel and displays multiple sets of elemental images on the LCD panels to integrate them on multiple locations simultaneously. As a result, the depth of the 3‐D image can be enhanced. For wide viewing angles, the time‐multiplexing method was adopted by displaying mask patterns on the front LCD panel. In addition, another technique to increase the contrast ratio of the proposed system has also been developed. Some experimental results will be provided.  相似文献   

8.
While the viewing angle (VA) is an important parameter of three‐dimensional (3‐D) displays, a method has not yet been devised to determine the VA. We proposed a new approach to determine a VA of an integral imaging display. An integrated point appears at the cross section between collected rays and a lens array; the VA of the integrated point is thus equal to the angle between the two farthest rays. This approach is useful to determine the VA of all 3‐D displays, because a 3‐D point appears in the cross section of collected rays. The result of this study showed that the VA depends on the position of the integrated point and is smaller than the VA of the conventional calculation.  相似文献   

9.
Abstract— A multi‐view depth‐fused 3‐D (DFD) display that provides smooth motion parallax for wide viewing angles is proposed. A conventional DFD display consists of a stack of two transparent emitting screens. It can produce motion parallax for small changes in observation angle, but its viewing zone is rather narrow due to the split images it provides in inclined views. On the other hand, even though multi‐view 3‐D displays have a wide viewing angle, motion parallax in them is discrete, depending on the number of views they show. By applying a stacked structure to multi‐view 3‐D displays, a wide‐viewing‐angle 3‐D display with smooth motion parallax was fabricated. Experimental results confirmed the viewing‐zone connection of DFD displays while the calculated results show the feasibility of stacked multi‐view displays.  相似文献   

10.
In this paper, we present a new fabrication of micro‐lens array (MLA) with pinhole array—pinhole/micro‐lens array (P/MLA) for integral imaging 3‐D display (II), which combine lithography and ink‐jet printing. A black circular groove array (BCGA) is used as pinhole array, and laser 3‐D microscope and a homemade setup have been used for the characterization of P/MLA. The results show that high‐precision P/MLA can be obtained using BCGA as templates. By controlling the driving voltage at different steps, the distance between nozzle and substrate, as well as the number of liquid droplets, P/MLA with smooth morphology, different sizes, good repeatability of geometry parameters, great uniformity of focusing, and good converging performance can be achieved. For demonstration, P/MLA with curvature, focal length, numerical aperture, and F‐number of 815.8 μm, 1.60 mm, 0.1311, and 3.8 are applied for the reconstruction in II, exhibiting good reconstruction performance with high resolution, and BCGA reduces the influence of stray light on II and improves the quality of the reconstructed image.  相似文献   

11.
Abstract— A 360°‐viewable cylindrical three‐dimensional (3‐D) display system based on integral imaging has been implemented. The proposed system is composed of a cylindrically arranged electroluminescent (EL) pinhole film, an EL film backlight, a barrier structure, and a transmission‐type flexible display panel. The cylindrically arranged point‐light‐source array, which is generated by the EL pinhole film reconstructs 360°‐viewable virtual 3‐D images at the center of the cylinder. In addition, the proposed system provides 3‐D/2‐D convertibility using the switching of EL pinhole film from a point light source to a surface light source. In this paper, the principle of operation, analysis of the viewing parameters, and the experimental results are presented.  相似文献   

12.
Due to the limitation of traditional microlens arrays (MLAs) in integral imaging display, the depth of field (DOF) is restricted in space and the center depth plane is difficult to extend in a large range. Here, we propose a microfabrication method based on bifocal MLAs to improve DOF. The bifocal MLAs for extended DOF were fabricated by using two-step photolithography and thermal reflow. This method allows diverse microlenses of high to low numerical aperture to achieve high spatial resolution as well as accurate depth estimation. Microlenses of different focal lengths were simultaneously deposited on a substrate by repeated photolithography with multiple photomasks with alignment mark to define micro-posts of different thicknesses. Hexagonally packaged bifocal MLAs clearly show the DOF extended from 0.004 to 4.908 mm for 57.6 μm in lens diameter, and their corresponding object distance ranges from 0.125 to 0.165 mm. Based on the proposed scheme, this method provides potential applications in integral imaging 3D display or light field display.  相似文献   

13.
Abstract— This work is related to static volumetric crystals which scintillate light when two laser beams are intersected within the crystal. The geometry in this crystal is optimized for linear slices. Most volumetric displays are based on rotational surfaces, which generate the images, while the projected images are sliced in a rotational sweep mode. To date, the majority of 3‐D graphic engines based on static‐volume displays have not been fully developed. To use an advanced 3‐D graphic engine designed for a swept‐volume display (SVD) with a static‐volume display, the display must emulate the operation of a SVD based on a rotational‐slicing approach. The CSpace® 3‐D display has the capability to render 3‐D images using the rotational‐slicing approach. This paper presents the development of a rotational‐slicing approach designed to emulate the operation of a SVD within the image volume of a static‐volume display. The display software has been modified to divide the 3‐D image into 46 slices, each passing through the image center and rotated at a fixed angle from the previous slice. Reconstructed 3‐D images were demonstrated using a rotational‐slicing approach. Suggestions are provided for future implementations that could aid in the elimination of elongations and distortions, which occur within specified slices.  相似文献   

14.
Abstract— This study develops an autostereoscopic display based on a multiple miniature projector array to provide a scalable solution for a high‐resolution 3‐D display with large viewing freedom. To minimize distortion and dispersion, and to maximize the modulation transfer function (MTF) of the projection image to optimize 3‐D image quality, a dedicated projection lens and an accurate six‐axis adjusting platform for the miniature projector were designed and fabricated. Image‐blending technology based on a lookup table was adopted to combine images from 30 miniature projectors into a seamless single image. The result was a 35‐in. autostereoscopic display with 60 views ata 30° viewing angle, 90° FOV, and large range of viewing distance. The proposed system exhibits very smooth motion parallax when viewers move around in front of it.  相似文献   

15.
We propose a high optical efficiency three‐dimensional (3D)/two‐dimensional (2D) convertible integral imaging display by using a pinhole array on a reflective polarizer. The 3D mode is realized by adopting a pinhole array on a reflective polarizer to generate a point light source array. Three‐dimensional/2D convertible feature is realized by electrically controlling a polarization switcher. The reflective polarizer can reflect the light that has the orthogonal polarization direction with the reflective polarizer and transmit the light that has the same polarization direction with the reflective polarizer. The reflected light is recycled, so the optical efficiencies for both 3D and 2D modes are enhanced. In the practical experiments, the optical efficiencies of the proposed integral imaging display increase by 8.04 times and 1.65 times in 3D and 2D modes comparing with the conventional integral imaging display that has no light recycle, respectively.  相似文献   

16.
Abstract— A high‐resolution autostereoscopic 3‐D projection display with a polarization‐control space dividing the iris‐plane liquid‐crystal shutter is proposed. The polarization‐control iris‐plane shutter can control the direction of stereo images without reducing the image quality of the microdis‐play. This autostereoscopic 3‐D projection display is 2‐D/3‐D switchable and has a high resolution and high luminance. In addition, it has no cross‐talk between the left and right viewing zones, a simple structure, and the capability to show multi‐view images.  相似文献   

17.
Abstract— A flat‐panel display with a slanted subpixel arrangement has been developed for a multi‐view three‐dimensional (3‐D) display. A set of 3M × N subpixels (M × N subpixels for each R, G, and B color) corresponds to one of the cylindrical lenses, which constitutes a lenticular lens, to construct each 3‐D pixel of a multi‐view display that offers M × N views. Subpixels of the same color in each 3‐D pixel have different horizontal positions, and the R, G, and B subpixels are repeated in the horizontal direction. In addition, the ray‐emitting areas of the subpixels within a 3‐D pixel are continuous in the horizontal direction for each color. One of the vertical edges of each subpixel has the same horizontal position as the opposite vertical edge of another subpixel of the same color. Cross‐talk among viewing zones is theoretically zero. This structure is suitable for providing a large number of views. A liquid‐crystal panel having this slanted subpixel arrangement was fabricated to construct a mobile 3‐D display with 16 views and a 3‐D resolution of 256 × 192. A 3‐D pixel is comprised of 12 × 4 subpixels (M = 4 and N = 4). The screen size was 2.57 in.  相似文献   

18.
Abstract— Depth‐enhanced integral three‐dimensional (3D) imaging using different optical path lengths by using a polarization selective mirror pair or mirror barrier array is proposed. In the proposed approach, the enhancement of image depth is achieved by repositioning two types of elemental image planes, thus effectively two central depth planes are obtained. One of the two implementation methods makes use of the two‐arm structure that has different optical path lengths and polarization‐selective mirrors. The other utilizes the mirror barrier array. The primary advantage of the method with polarization devices is that we can observe 3D images that maintain some level of viewing resolution with a large depth difference without any mechanical moving part. The mirror barrier array has the advantage of the compact thickness. We demonstrated and verified our proposals experimentally.  相似文献   

19.
Abstract— A 42‐in. 2‐D/3‐D switchable display operating in a parallax‐barrier‐type system consisting of liquid‐crystal displays (LCDs) has been developed. The system displays 2‐D images in full resolution, without any degradation to the original 2‐D images, and 3‐D autostereoscopic images with resolutions higher than SVGA with wide viewing zones electrically controlled by the parallax‐barrier system. The system is intended for use in public‐information displays (PIDs), a booming field, and as displays for gaming, medical, and simulation applications.  相似文献   

20.
Abstract— Improvements achieved in image resolution and volume in a volumetric display based on the two‐frequency, two‐step upconversion (TFTS) method are presented. Two digital micromirror devices (DMDs) are utilized to generate fast scanning of the image volume at high resolution. Improvements in resolution and image size over previous implementations are achieved by choosing sodium—ytterbium—fluoride for the imaging crystal instead of the conventional ytterbium—lithium—fluoride composition. Experimentally, images at 532 nm were constructed using 45 slices with each slice rendered at 1024 × 768 resolution, resulting in almost 35 million voxels. The resulting system has the potential to achieve a resolution beyond a targeted 800 million voxels without viewpoint obstruction and with expandability to three‐color imagery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号