首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用Gleeble-3800热模拟机对铸态TC18钛合金进行高温热压缩变形实验,分析该合金在变形温度1000~1150℃、应变速率0.01~10s-1和变形量为70%条件下流变应力的变化规律。确定TC18钛合金热变形激活能,建立热加工图,并通过组织观察对热加工图进行解释。综合不同应变量下的热加工图,获得了试验参数范围内热变形过程的最佳工艺参数,为铸态TC18钛合金热加工工艺优化提供理论依据。  相似文献   

2.
利用Gleeble-1500D热模拟试验机,在应变速率为0.01~10 s-1,变形温度为1000~1150℃条件下对铸态27Si Mn钢进行等温恒应变速率压缩试验。通过真应力-真应变曲线,分析了应变速率和变形温度对流变应力的影响规律,建立了铸态27Si Mn钢热变形时的本构方程和热加工图。结果表明,铸态27Si Mn钢高温变形时的峰值应力随应变速率的增大和变形温度的降低而升高;变形激活能为Q=369.0 k J/mol;热变形失稳区域集中在变形温度1000~1060℃、应变速率为1~10 s-1的区域内;最优热加工条件为变形温度1130~1150℃,应变速率4~10 s-1的区域,此时表现为典型的动态再结晶,对应的峰值效率达到35%。  相似文献   

3.
AZ31B镁合金热压缩力学行为与本构方程建立   总被引:1,自引:1,他引:0  
根据对铸态AZ31B镁合金在温度为280~440℃、应变速率为0.001~0.1 s-1条件下进行热压缩试验,分析了变形程度、应变速率和加热温度对其流动应力的影响,结果表明,该合金热变形时的流动应力对变形温度和变形速率极为敏感,随变形温度的升高而降低,随变形速率的增加而增大.在温度为440℃,应变速率小于0.01 s-...  相似文献   

4.
由热模拟压缩实验数据分别建立铸态和锻态2种组织状态的TiNiNb合金的本构方程,并采用多项式构建Arrhenius双曲正弦型本构方程参数A、n、、Q与的函数关系。从热变形激活能随不同影响因子的变化规律出发,探究该合金在不同组织状态下的热加工性能。结果表明:铸态TiNiNb合金的流变应力略高于锻态,这主要与金属间化合物的长程有序点阵结构有关,铸态合金的适宜加工参数范围为应变速率小于0.1 s-1,最大应变小于0.4,锻态合金的适宜加工参数范围为应变速率小于0.56 s-1,最大应变小于0.5  相似文献   

5.
在Gleeble-1500D热模拟试验机上,通过高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.03P合金在应变速率为0.01~5 s-1、变形温度为600~800℃的动态再结晶行为以及组织转变进行了研究。结果表明:在应变温度为750、800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征。同时从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的热变形激活能(Q)为485.6 kJ/mol和热变形本构方程。根据动态材料模型计算并分析了该合金的热加工图,利用热加工图确定热变形的流变失稳区,并且获得了试验参数范围内热变形过程的最佳工艺参数,温度为750~800℃,应变速率范围为0.01~0.1 s-1,并利用热加工图分析了该合金不同区域的高温变性特征以及组织变化。  相似文献   

6.
Ti53311S合金高温塑性变形行为及加工图   总被引:3,自引:0,他引:3  
在Gleeble-1500热模拟试验机上进行热压缩试验,研究了变形温度为880~1080 ℃,应变速率为0.001~10 s-1的Ti53311S钛合金的热变形行为.根据应力应变曲线分析了该合金的热变形行为,计算分析了加工图,并观察了变形后的显微组织.利用加工图结合显微组织确定了热变形的流变失稳区和实验范围内的最佳变形参数.结果表明:Ti53311S钛合金加工过程中温度应控制在相变点以下,应变速率应控制在0.01 s-1以上和10 s-1以下为宜.  相似文献   

7.
在 Gleeble-1500D热模拟机上进行热压缩试验,研究了变形温度为320~440℃、应变速率为0.001~1.000 s-1、最大变形程度为60%的条件下挤压态AZ81镁合金的高温热变形行为.热变形过程中的稳态流变应力可用双曲正弦本构关系式来描述,平均激活能为182.17 kJ/mol,大于其自扩散激活能.根据材料动态模型,计算并分析了挤压态AZ81合金的热加工图,结合显微组织观察结果,分析了挤压态AZ81镁合金的热加工性能.在变形温度为320~440℃、应变速率为0.001~1.000 s-1、最大变形程度为60%的条件下,失稳判据ξ(ε)>0,说明AZ81镁合金在该条件下塑性变形性能良好.并根据加工图获得了在试验参数范围内的热变形过程的最佳工艺参数范围,其热加工温度选在380~400℃、应变速率为0.010~0.100 s-1时较好.  相似文献   

8.
采用Gleeble-3800,对铸态309L不锈钢在900~1 100℃、0. 01~10 s-1进行热压缩模拟,得到实验钢的热变形应力应变曲线、建立其相应的本构方程和热加工图。结果表明:309L不锈钢的流动应力,对其变形温度和应变速率更敏感;根据Arrhenius模型构建铸态309L不锈钢峰值应力下,相应的本构方程,计算得到其热变形激活能为353. 27 k J/mol;依据相应的变形曲线,绘制本实验钢的热加工图,得出当温度处于1 050~1 100℃、应变速率在0. 01~0. 05 s-1时和温度在1 030~1 100℃、应变速率在3. 1~10 s-1时,309L不锈钢具有最佳的工艺,有良好的热加工性能。  相似文献   

9.
3003铝合金热变形机制及其加工图   总被引:1,自引:0,他引:1  
对经高效熔体处理的3003铝合金进行变形温度为300 ~500℃、应变速率为0.01~10.0 s-1的等温压缩热模拟实验.采用材料动态模型建立该合金的热加工图,并结合OM和TEM等测试方法对热变形后的微观组织进行分析,确定了该合金的热变形机制图.结果表明:该合金加工失稳区为变形温度300 ~380℃、应变速率1.0~10.0s-1的区域,热变形加工的最佳工艺参数为变形温度380~430℃、应变速率1.0~~10.0 s-1,在该区域合金主要发生动态再结晶.  相似文献   

10.
在Gleeble-1500热模拟试验机上进行高温压缩试验,研究了变形温度为1000~1100℃,初始应变速率为0.01~1 s-1的铸态Ti-6Al-4V-0.1B合金的变形行为。基于动态材料模型建立了加工图,并观察了变形组织。结果表明:该合金为热敏感和应力敏感型合金,热变形的最佳变形参数为1050~1100℃,应变速率在0.1~1 s-1之间。铸态大变形区组织为沿着变形方向拉长的原始β晶粒,晶粒组织内部出现针状马氏体,TiB相在变形的过程中出现折断,并沿着加工流线分布。  相似文献   

11.
12.
13.
论述了CAD技术中参数化设计的三种建模方法,重点介绍了基于特征的参数化建模原理。在此基础上,分析机械设计中的机构结构,归纳出其零件的几何特征构成。设计了机构CAD图形库,并提出了该图形库生成步骤和人机交互界面。  相似文献   

14.
刘兴  赵霞 《表面技术》2008,37(1):37-39
采用激光辐照对FeCrAlW电弧喷涂层的组织进行致密化处理,借助扫描电镜和X衍射对涂层的组织进行了分析.测试了涂层的显微硬度.结果表明:涂层组织致密度提高,孔隙率明显降低.随着激光扫描速度的增加,涂层的显微硬度降低.在较低的扫描速度下,涂层与基体之间形成互熔区,涂层与基体之间产生良好的冶金结合.  相似文献   

15.
16.
17.
扫描电镜观察显示胫骨是一种由羟基磷灰石和胶原蛋白组成的自然生物陶瓷复合材料.羟基磷灰石具有层状的微结构并且平行于骨的表面排列.观察也显示这些羟基磷灰石层又是由许多羟基磷灰石片所组成,这些羟基磷灰石片具有长而薄的形状,也以平行的方式整齐排列.基于在胫骨中观察到的羟基磷灰石片的微结构特征,通过微结构模型分析及实验,研究了羟基磷灰石片平行排列微结构的最大拔出能.结果表明,羟基磷灰石片长而薄的形状以及平行排列方式增加了其最大拔出能,进而提高了骨的断裂韧性.  相似文献   

18.
高等教育国际化与中国高等教育施化力培育   总被引:5,自引:2,他引:5  
本文从化层、化型、化向与化力等方面考察高等教育国际化的应然本质属性 ,描述与分析中国高等教育在国际化潮流中表现出的发展态势 ,针对种种态势提出中国高等教育核心施化力培育战略 ,以使中国高等教育乃至世界高等教育真正地走向国际化  相似文献   

19.
This paper describes the general features of the functional methods of electrohydropulse, pulse electrocurrent, and magnetic pulse treatment processes of the melt in order to positively vary its crystallizaton ability.  相似文献   

20.
Conclusion In alloy Fe-42% W atomized with a cooling rate during solidification within the limits from 5·103 to 1·105°C/sec with the maximum cooling rate (not less than 105°C/sec) precipitation of -phase (Fe7W6) from the liquid melt is suppressed. In granules of alloy obtained with a high solidification rate it is possible to achieve total dissolution of tungsten in solid solution (42%). Subsequent heating causes precipitation of -phase in dispersed form.I. P. Bardin Central Scientific-Research Institute of Ferrous Metallurgy (TsNIIChERMET) Moscow. Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 9, pp. 34–36, September, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号