共查询到16条相似文献,搜索用时 62 毫秒
1.
2.
3.
计算机视觉领域中,目标跟踪技术有着广泛的实用价值。在复杂背景下要准确和稳定地实现目标跟踪,势必需要多信息融合技术。文章针对传统的基于颜色概率模型的Mean Shift算法忽略了目标空间信息这一不足,提出了联合特征的Mean Shift算法。文中将跟踪窗内子图像进行多级小波分解,用多级小波子带系数的统计特性构成纹理特征向量,再加权融合颜色概率直方图特征向量作为最终匹配特征向量。实验结果表明,在复杂背景下,该方法比传统基于颜色概率直方图模型的Mean Shift算法在准确性和鲁棒性上均有所提高。 相似文献
4.
带宽自适应Mean Shift跟踪算法 总被引:2,自引:0,他引:2
提出了一种先进行空间定位再确定目标尺度的两级跟踪算法,有效地解决了mean shift算法对尺度变化的适应问题.该算法首先在当前帧对应位置进行降分辨率处理,并以基于增量试探的mean shift跟踪算法收敛点作为当前帧目标中心位置,进而利用对数极坐标变换的旋转、尺度不变性,对目标和候选目标分别进行对数极坐标映射,并通过求取最大归一化相关函数确定目标的尺度变化.跟踪实验表明,该算法可以有效的提高mean shift跟踪算法空间和尺度定位准确性. 相似文献
5.
为了提高视频运动目标跟踪的准确性和实时性,提出一种改进的粒子滤波和Mean Shift联合跟踪算法.针对传统粒子滤波跟踪算法中颜色直方图观测模型存在的局限性,提出了一种基于分块颜色直方图的观测模型描述方法,并根据该分块直方图的特点,重新设计了粒子权值的更新策略;针对粒子滤波算法实时性差的问题,提出了一种基于积分直方图的颜色特征快速计算方法,极大地降低了算法的运算量;为了降低相似背景干扰对跟踪效果的影响,提出了一种基于Gabor幅度谱的Mean Shift跟踪算法,并利用改进的Mean Shift算法对粒子滤波跟踪结果进行优化,提高了跟踪算法在复杂背景下的搜索能力.实验结果表明了算法的有效性. 相似文献
6.
将Mean Shift算法应用于序列图像中的手势跟踪,利用梯度优化方法实现快速目标定位,能够对非刚性目标实时跟踪,并且对目标的变形、旋转等运动有较好的适用性.实验结果表明,Mean Shift算法在目标姿态变化、光照变化下的跟踪效果较好. 相似文献
7.
8.
传统Mean Shift跟踪算法在目标颜色特征和背景颜色特征相近、尺度变化等情景下效果不理想.提出了一种特征融合且核函数带宽自适应的改进跟踪算法,针对颜色直方图容易受背景区域影响,融合了边缘直方图,并对核函数带宽进行自适应更新.另外,对目标模型的更新进行了相关探索并给出比较结果.结果表明,该算法可以对目标实现更稳定的跟踪,对目标颜色和背景颜色相近、尺度变化等场景具有很好的适应性. 相似文献
9.
为了实现对变尺度快速运动目标的良好跟踪,在对传统Mean Shift跟踪算法改进的基础上,提出了一种运动目标自适应跟踪算法。该算法首先采用目标区域的像素点空域加权后的彩色图像作为初始帧目标模板,目标的真实位置利用Mean Shift算法迭代求得,从而实现对快速运动目标的空间定位,然后将相邻帧的目标采用尺度不变特征变换(SIFT)算子进行特征匹配,根据目标的缩放因子实时更新下一帧的核带宽,修正算法跟踪窗口的尺寸,以适应目标尺度的变化,从而实现对快速运动目标的尺度定位。最后,通过实验表明,与传统的Mean Shift跟踪算法相比,该算法的跟踪准确率达到97%以上,能够实现对变尺度快速运动目标的精确跟踪。 相似文献
10.
结合目标预估计与Mean Shift理论的运动目标跟踪算法 总被引:3,自引:2,他引:3
图像的运动包括目标、背景和平台的运动,复杂的运动关系增加了目标跟踪的难度.提出了一种有效的基于Mean Shift理论的运动目标跟踪算法.为提高算法的实时性,对Mean Shift算法的核函数进行了改进,使得加减运算替代乘方和浮点运算,大大提高了运算效率;并通过对迭代权值的改进,强化了初始模板的主要信息,提高了算法跟踪与背景相似目标的能力;采用自动更新模板的策略,克服了目标特征分布发生改变的问题;在此基础上,引入了目标预检测,提出了综合背景差分检测的运动目标跟踪算法,实验表明:该算法在目标被遮挡情况下具有较强的适应性. 相似文献
11.
利用均值漂移进行目标跟踪的算法,在被跟踪目标出现旋转、尺度变化、噪声干扰等情况下,无法得到准确的跟踪结果。文中提出了基于当前流行目标跟踪算法和局部特征相结合的算法,基于局部特征-形状上下文(Shape Context)特征的Mean Shift目标跟踪算法。该算法首先提取目标的轮廓信息和特征,根据采样点之间位置和距离关系建立Shape Context直方图,最后所有点的Shape Context直方图构成了图像的Shape Context特征,最后根据Mean Shift算法进行跟踪。实验结果表明,该算法在跟踪目标出现尺度变化、旋转、噪声干扰和遮挡等情况下能够准确地跟踪物体,鲁棒性好。 相似文献
12.
一种基于特征融合的运动目标跟踪算法 总被引:3,自引:1,他引:3
联合目标的灰度特征空间和梯度特征空间,构造了由目标的灰度加权直方图和梯度加权直方图联合表示的目标模型,利用均值平移算法在当前帧中迭代搜索目标位置.实验表明,该方法对于目标和背景灰度相似以及目标被部分遮挡时的跟踪是有效和稳健的. 相似文献
13.
14.
针对不规则目标和背景区分度低的目标在跟踪过程中尺度和旋转自适应的问题,提出了基于前景概率密度函数和椭圆拟合的均值平移目标跟踪算法.首先依据初始化的目标窗口及其周围的背景区域建立前景概率密度函数,抑制跟踪窗口内的背景像素,建立可靠的目标模板;然后将前景概率密度函数引入均值平移的迭代过程,实现跟踪窗口的快速定位;最后计算跟踪窗口内各点的前景概率密度函数,反向投影为前景概率分布图,通过对该图的边缘提取和椭圆拟合,获得当前目标的位置、尺度和旋转信息,并将其用于对下一帧跟踪窗口的初始化.实验结果表明,该方法克服了背景干扰对跟踪窗初始定位和目标信息更新的影响,能够实现对目标尺度和旋转的自适应,具有跟踪稳定和实时性高的特点. 相似文献
15.
16.
基于直方图插值的均值移动小尺寸目标跟踪算法 总被引:1,自引:0,他引:1
小尺寸目标跟踪是视觉跟踪中的难题.该文首先指出了均值移动小尺寸目标跟踪算法中的两个主要问题:算法跟踪中断和丢失跟踪目标.然后,论文给出了相应的解决方法.对传统Parzen窗密度估计法加以改进,并用于对候选目标区域的直方图进行插值处理,较好地解决了算法跟踪中断问题.论文采用Kullback-Leibler距离作为目标模型和候选目标之间的新型相似性度量函数,并推导了其相应的权值和新位置计算公式,提高了算法的跟踪精度.多段视频序列的跟踪实验表明,该文提出的算法可以有效地跟踪小尺寸目标,能够成功跟踪只有6×12个像素的小目标,跟踪精度也有一定提高. 相似文献