首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 965 毫秒
1.
We describe an additional module for the Mathematica package FeynRules that allows for an easy building of any N=1 supersymmetric quantum field theory, directly in superspace. After the superfield content of a specific model has been implemented, the user can study the properties of the model, such as the supersymmetric transformation laws of the associated Lagrangian, directly in Mathematica. While the model dependent parts of the latter, i.e., the soft supersymmetry-breaking Lagrangian and the superpotential, have to be provided by the user, the model independent pieces, such as the gauge interaction terms, are derived automatically. Using the strengths of the FeynRules program, it is then possible to derive all the Feynman rules associated to the model and implement them in all the Feynman diagram calculators interfaced to FeynRules in a straightforward way.

Program summary

Program title: “FeynRules”Catalogue identifier: AEDI_v1_1Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDI_v1_1.htmlProgram obtainable from: CPC Program Library, Queen?s University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 46 491No. of bytes in distributed program, including test data, etc.: 381 582Distribution format: tar.gzProgramming language: MathematicaComputer: Platforms on which Mathematica is availableOperating system: Operating systems on which Mathematica is availableClassification: 11.1, 11.6Catalogue identifier of previous version: AEDI_v1_0Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 1614Does the new version supersede the previous version?: NoNature of problem: Study of the properties of N=1 supersymmetric field theories using the superfield formalism, derivation of the associated Lagrangians.Solution method: We use the FeynRules package and define internally the N=1 superspace. Then, we implement a module allowing to:
  • 1. 
    Perform the Grassmann variable series expansion so that any superfield expression can be developed in terms of the component fields. The resulting expression is thus suitable to be treated by the FeynRules package directly.
  • 2. 
    Execute a set of operations associated to the superspace, such as the superderivatives of an expression or the calculation of its supersymmetric transformation laws.
Reasons for new version: This is an interim update to the FeynRules-1.4 (AEDI_v1_0), package which includes a new superspace module. Further modules will be added in the future and eventually published as FeynRules-1.6.Summary of revisions: This revised version contains, in addition to the core program, the superfield module of FeynRules.Restrictions: Superfields related to spin 3/2 and 2 particles are not implemented.Unusual features: All calculations in the internal routines are performed completely. The only hardcoded core is the Grassmann variable algebra.Running time: It depends on the user?s purposes. The extraction of a Lagrangian in terms of the component fields may take a few minutes for a complete model with complex mixing between the fields.  相似文献   

2.
The LanHEP program version 3.0 for Feynman rules generation from the Lagrangian is described. It reads the Lagrangian written in a compact form, close to the one used in publications. It means that Lagrangian terms can be written with summation over indices of broken symmetries and using special symbols for complicated expressions, such as covariant derivative and strength tensor for gauge fields. Supersymmetric theories can be described using the superpotential formalism and the 2-component fermion notation. The output is Feynman rules in terms of physical fields and independent parameters in the form of CompHEP model files, which allows one to start calculations of processes in the new physical model. Alternatively, Feynman rules can be generated in FeynArts format or as LaTeX table. One-loop counterterms can be generated in FeynArts format.

Program summary

Program title: LanHEPCatalogue identifier: ADZV_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECH_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 83 041No. of bytes in distributed program, including test data, etc.: 1 090 931Distribution format: tar.gzProgramming language: CComputer: PCOperating system: LinuxRAM: 2 MB (SM), 12 MB (MSSM), 120 MB (MSSM with counterterms)Classification: 4.4Nature of problem: Deriving Feynman rules from the LagrangianSolution method: The program reads the Lagrangian written in a compact form, close to the one used in publications. It means that Lagrangian terms can be written with summation over indices of broken symmetries and using special symbols for complicated expressions, such as covariant derivative and strength tensor for gauge fields. Tools for checking the correctness of the model, and for simplifying the output expressions are provided. The output is Feynman rules in terms of physical fields and independent parameters in the form of CompHEP model files, which allows one to start calculations of processes in the new physical model. Alternatively, Feynman rules can be generated in FeynArts format or as a LaTeX table.Running time: 1 sec (SM), 8 sec (MSSM), 8 min (MSSM with counterterms)  相似文献   

3.
Modelling, simulation, and visualisation together create the third branch of human knowledge on equal footing with theory and experiment. Model-Driven Development (MDD) has been proposed as a means to support the software development process through the use of a model-centric approach. The objective of this paper is to address the design of an architecture for scientific application that may execute as multithreaded computations, as well as implementations of the related shared data structures.

New version program summary

Program title: Growth09Catalogue identifier: ADVL_v3_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADVL_v3_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 30 940No. of bytes in distributed program, including test data, etc.: 3 119 488Distribution format: tar.gzProgramming language: Embarcadero DelphiComputer: Intel Core Duo-based PCOperating system: Windows XP, Vista, 7RAM: more than 1 GBClassification: 4.3, 7.2, 6.2, 8, 14Catalogue identifier of previous version: ADVL_v2_1Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 1219Subprograms used:
Cat IdTitleReference
ADUY_v4_0RHEED1DProcessCPC 999 (9999) 9999
Full-size table
  相似文献   

4.
A new atsp2K module is presented for evaluating the electron density function of any multiconfiguration Hartree-Fock or configuration interaction wave function in the non-relativistic or relativistic Breit-Pauli approximation. It is first stressed that the density function is not a priori spherically symmetric in the general open shell case. Ways of building it as a spherical symmetric function are discussed, from which the radial electron density function emerges. This function is written in second quantized coupled tensorial form for exploring the atomic spherical symmetry. The calculation of its expectation value is performed using the angular momentum theory in orbital, spin, and quasispin spaces, adopting a generalized graphical technique. The natural orbitals are evaluated from the diagonalization of the density matrix.

Program summary

Program title: DENSITYCatalogue identifier: AEFR_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFR_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 6603No. of bytes in distributed program, including test data, etc.: 169 881Distribution format: tar.gzProgramming language: FORTRAN 90Computer: HP XC Cluster Platform 4000Operating system: HP XC System Software 3.2.1, which is a Linux distribution compatible with Red Hat Enterprise Advanced ServerWord size: 32 bitsClassification: 2.1, 2.9, 4.1Subprograms used:
Cat IdTitleReference
ADLY_v2_0ATSP2KCPC 176 (2007) 559
Full-size table
  相似文献   

5.
FeynRules  is a Mathematica-based package which addresses the implementation of particle physics models, which are given in the form of a list of fields, parameters and a Lagrangian, into high-energy physics tools. It calculates the underlying Feynman rules and outputs them to a form appropriate for various programs such as CalcHep, FeynArts, MadGraph, Sherpa  and Whizard. Since the original version, many new features have been added: support for two-component fermions, spin-3/2 and spin-2 fields, superspace notation and calculations, automatic mass diagonalization, completely general FeynArts  output, a new universal FeynRules  output interface, a new Whizard  interface, automatic 1→212 decay width calculation, improved speed and efficiency, new guidelines for validation and a new web-based validation package. With this feature set, FeynRules  enables models to go from theory to simulation and comparison with experiment quickly, efficiently and accurately.  相似文献   

6.
We describe the FeynEdit tool for drawing Feynman diagrams. Input and output is done using the macros of FeynArts, which also implies that diagrams drawn by FeynArts can be edited with FeynEdit. The code can be conveniently transferred using copy-and-paste.

Program summary

Program title: FeynEditCatalogue identifier: AEBX_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBX_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 31 729No. of bytes in distributed program, including test data, etc.: 500 240Distribution format: tar.gzProgramming language: JavaComputer: All Java-capable platformsOperating system: Linux, Mac OS, WindowsRAM: 1-2 MBytesClassification: 4.4Nature of problem: Graphical editing of Feynman diagrams.Solution method: The user copy-and-pastes the LaTeX code of the Feynman diagram into the editor, clicks a button to visualize the diagram, modifies it using the mouse, and finally copy-and-pastes it back into the text.Restrictions: Propagators are presently drawn only as straight lines. This is largely for performance reasons and may be added in a future version. It is not a serious deficit because that information can easily be added in the LaTeX code.Unusual features: Uses FeynArts' LaTeX representation for input and outputRunning time: User-dependent  相似文献   

7.
HiggsBounds is a computer code that tests theoretical predictions of models with arbitrary Higgs sectors against the exclusion bounds obtained from the Higgs searches at LEP and the Tevatron. The included experimental information comprises exclusion bounds at 95% C.L. on topological cross sections. In order to determine which search topology has the highest exclusion power, the program also includes, for each topology, information from the experiments on the expected exclusion bound, which would have been observed in case of a pure background distribution. Using the predictions of the desired model provided by the user as input, HiggsBounds determines the most sensitive channel and tests whether the considered parameter point is excluded at the 95% C.L. HiggsBounds is available as a Fortran 77 and Fortran 90 code. The code can be invoked as a command line version, a subroutine version and an online version. Examples of exclusion bounds obtained with HiggsBounds are discussed for the Standard Model, for a model with a fourth generation of quarks and leptons and for the Minimal Supersymmetric Standard Model with and without CP-violation. The experimental information on the exclusion bounds currently implemented in HiggsBounds will be updated as new results from the Higgs searches become available.

Program summary

Program title: HiggsBoundsCatalogue identifier: AEFF_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFF_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 55 733No. of bytes in distributed program, including test data, etc.: 1 986 213Distribution format: tar.gzProgramming language: Fortran 77, Fortran 90 (two code versions are offered).Computer: HiggsBounds can be built with any compatible Fortran 77 or Fortran 90 compiler. The program has been tested on x86 CPUs running under Linux (Ubuntu 8.04) and with the following compilers: The Portland Group Inc. Fortran compilers (pgf77, pgf90), the GNU project Fortran compilers (g77, gfortran).Operating system: LinuxRAM: minimum of about 6000 kbytes (dependent on the code version)Classification: 11.1External routines: HiggsBounds requires no external routines/libraries. Some sample programs in the distribution require the programs FeynHiggs 2.6.x or CPsuperH2 to be installed (see “Subprograms used”).Subprograms used:
Cat IdTitleReference
ADKT_v2_0FeynHiggsv2.6.5CPC 180(2009)1426
ADSR_v2_0CPsuperH2.0CPC 180(2009)312
Full-size table
  相似文献   

8.
In this article, we describe a new algorithm for the expansion of hypergeometric functions about half-integer parameters. The implementation of this algorithm for certain classes of hypergeometric functions in the already existing Mathematica package HypExp is described. Examples of applications in Feynman diagrams with up to four loops are given.

New version program summary

Program title:HypExp 2Catalogue identifier:ADXF_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXF_v2_0.htmlProgram obtainable from:CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.:106 401No. of bytes in distributed program, including test data, etc.:2 668 729Distribution format:tar.gzProgramming language:MathematicaComputer:Computers running MathematicaOperating system:Linux, Windows, MacRAM:Depending on the complexity of the problemSupplementary material:Library files which contain the expansion of certain hypergeometric functions around their parameters are availableClassification:4.7, 5Does the new version supersede the previous version?:YesNature of problem:Expansion of hypergeometric functions about parameters that are integer and/or half-integer valued.Solution method:New algorithm implemented in Mathematica.Reasons for new version:Expansion about half-integer parameters.Summary of revisions:Ability to expand about half-integer valued parameters added.Restrictions:The classes of hypergeometric functions with half-integer parameters that can be expanded are listed below.Additional comments:The package uses the package HPL included in the distribution.Running time:Depending on the expansion.  相似文献   

9.
10.
11.
A new version of the “MinFinder” program is presented that offers an augmented linking procedure for Fortran-77 subprograms, two additional stopping rules and a new start-point rejection mechanism that saves a significant portion of gradient and function evaluations. The method is applied on a set of standard test functions and the results are reported.

New version program summary

Program title: MinFinder v2.0Catalogue identifier: ADWU_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWU_v2_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC Licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 14 150No. of bytes in distributed program, including test data, etc.: 218 144Distribution format: tar.gzProgramming language used: GNU C++, GNU FORTRAN, GNU CComputer: The program is designed to be portable in all systems running the GNU C++ compilerOperating system: Linux, Solaris, FreeBSDRAM: 200 000 bytesClassification: 4.9Catalogue identifier of previous version: ADWU_v1_0Journal reference of previous version: Computer Physics Communications 174 (2006) 166-179Does the new version supersede the previous version?: YesNature of problem: A multitude of problems in science and engineering are often reduced to minimizing a function of many variables. There are instances that a local optimum does not correspond to the desired physical solution and hence the search for a better solution is required. Local optimization techniques can be trapped in any local minimum. Global optimization is then the appropriate tool. For example, solving a non-linear system of equations via optimization, one may encounter many local minima that do not correspond to solutions, i.e. they are far from zero.Solution method: Using a uniform pdf, points are sampled from a rectangular domain. A clustering technique, based on a typical distance and a gradient criterion, is used to decide from which points a local search should be started. Further searching is terminated when all the local minima inside the search domain are thought to be found. This is accomplished via three stopping rules: the “double-box” stopping rule, the “observables” stopping rule and the “expected minimizers” stopping rule.Reasons for the new version: The link procedure for source code in Fortran 77 is enhanced, two additional stopping rules are implemented and a new criterion for accepting-start points, that economizes on function and gradient calls, is introduced.Summary of revisions:
1.
Addition of command line parameters to the utility program make_program.
2.
Augmentation of the link process for Fortran 77 subprograms, by linking the final executable with the g2c library.
3.
Addition of two probabilistic stopping rules.
4.
Introduction of a rejection mechanism to the Checking step of the original method, that reduces the number of gradient evaluations.
Additional comments: A technical report describing the revisions, experiments and test runs is packaged with the source code.Running time: Depending on the objective function.  相似文献   

12.
We present a general purpose parallel molecular dynamics simulation code. The code can handle NVE, NVT, and NPT ensemble molecular dynamics, Langevin dynamics, and dissipative particle dynamics. Long-range interactions are handled by using the smooth particle mesh Ewald method. The implicit solvent model using solvent-accessible surface area was also implemented. Benchmark results using molecular dynamics, Langevin dynamics, and dissipative particle dynamics are given.

Program summary

Title of program:MM_PARCatalogue identifier:ADXP_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXP_v1_0Program obtainable from: CPC Program Library, Queen's University of Belfast, N. IrelandComputer for which the program is designed and others on which it has been tested:any UNIX machine. The code has been tested on Linux cluster and IBM p690Operating systems or monitors under which the program has been tested:Linux, AIXProgramming language used:CMemory required to execute with typical data:∼60 MB for a system of atoms Has the code been vectorized or parallelized? parallelized with MPI using atom decomposition and domain decompositionNo. of lines in distributed program, including test data, etc.:171 427No. of bytes in distributed program, including test data, etc.:4 558 773Distribution format:tar.gzExternal routines/libraries used:FFTW free software (http://www.fftw.org)Nature of physical problem:Structural, thermodynamic, and dynamical properties of fluids and solids from microscopic scales to mesoscopic scales.Method of solution:Molecular dynamics simulation in NVE, NVT, and NPT ensemble, Langevin dynamics simulation, dissipative particle dynamics simulation.Typical running time:Table below shows the typical run times for the four test programs.
Benchmark results. The values in the parenthesis are the number of processors used
SystemMethodTiming for 100 steps in seconds
256 TIP3PMD23.8 (1)
64 DMPC + 1645 TIP3PMD890 (1)528 (2)326 (4)209 (8)
8 Aβ16-22LD1.02 (1)
23760 Groot-Warren particlesDPD22.16 (1)
Full-size table
  相似文献   

13.
14.
We present a computer algebra program for verifying soliton solutions of ultradiscrete equations in which both dependent and independent variables take discrete values. The package is applicable to equations and solutions that include the max function. The program is implemented using Maple software.

Program summary

Program title: UltdeCatalogue identifier: AEDB_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDB_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 3171No. of bytes in distributed program, including test data, etc.: 13 633Distribution format: tar.gzProgramming language: Maple 10Computer: PC/AT compatible machineOperating system: Windows 2000, Windows XPRAM: Depends on the problem; minimum about 1 GBWord size: 32 bitsClassification: 5Nature of problem: The existence of multi-soliton solutions strongly suggest the integrability of nonlinear evolution equations. However enormous calculation is required to verify multi-soliton solutions of ultradiscrete equations. The use of computer algebra can be helpful in such calculations.Solution method: Simplification by using the properties of max-plus algebra.Restrictions: The program can only handle single ultradiscrete equations.Running time: Depends on the complexity of the equation and solution. For the examples included in the distribution the run times are as follows. (Core 2 Duo 3 GHz, Windows XP)
Example 1: 2725 sec.
Example 2: 33 sec.
Example 3: 1 sec.
  相似文献   

15.
The GeodesicViewer realizes exocentric two- and three-dimensional illustrations of lightlike and timelike geodesics in the general theory of relativity. By means of an intuitive graphical user interface, all parameters of a spacetime as well as the initial conditions of the geodesics can be modified interactively. This makes the GeodesicViewer a useful instrument for the exploration of geodesics in four-dimensional Lorentzian spacetimes.

Program summary

Program title: GeodesicViewerCatalogue identifier: AEFP_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFP_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 168 868No. of bytes in distributed program, including test data, etc.: 6 076 202Distribution format: tar.gzProgramming language: C++, Qt, Qwt, OpenGLComputer: All platforms with a C++ compiler, Qt, Qwt, OpenGLOperating system: Linux, Mac OS XRAM: 24 MbytesClassification: 1.5External routines:
Gnu Scientific Library (GSL) (http://www.gnu.org/software/gsl/)
Motion4D (included in the package). The Motion4D library can also be downloaded from CPC. Catalogue identifier: AEEX
Qt (http://qt.nokia.com/downloads)
Qwt (http://qwt.sourceforge.net/)
OpenGL (http://www.opengl.org/)
Nature of problem: Illustrate geodesics in four-dimensional Lorentzian spacetimes.Solution method: Integration of ordinary differential equations. 3D-Rendering via OpenGL.Running time: Interactive. The examples given take milliseconds.  相似文献   

16.
Deterministic method based on ray tracing technique is known as a powerful alternative to the Monte Carlo approach for virtual X-ray imaging. The algorithm speed is a critical issue in the perspective of simulating hundreds of images, notably to simulate tomographic acquisition or even more, to simulate X-ray radiographic video recordings. We present an algorithm for voxel-based deterministic simulation of X-ray imaging using voxel-driven forward and backward perspective projection operations and minimum bounding rectangles (MBRs). The algorithm is fast, easy to implement, and creates high-quality simulated radiographs. As a result, simulated radiographs can typically be obtained in split seconds with a simple personal computer.

Program summary

Program title: X-rayCatalogue identifier: AEAD_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAD_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 416 257No. of bytes in distributed program, including test data, etc.: 6 018 263Distribution format: tar.gzProgramming language: C (Visual C++)Computer: Any PC. Tested on DELL Precision 380 based on a Pentium D 3.20 GHz processor with 3.50 GB of RAMOperating system: Windows XPClassification: 14, 21.1Nature of problem: Radiographic simulation of voxelized objects based on ray tracing technique.Solution method: The core of the simulation is a fast routine for the calculation of ray-box intersections and minimum bounding rectangles, together with voxel-driven forward and backward perspective projection operations.Restrictions: Memory constraints. There are three programs in all.
A. Program for test 3.1(1): Object and detector have axis-aligned orientation;
B. Program for test 3.1(2): Object in arbitrary orientation;
C. Program for test 3.2: Simulation of X-ray video recordings.
1.
Program A Memory required to execute with typical data: 207 Megabytes, depending on the size of the input file. Typical running time: 2.30 s. (Tested in release mode, the same below.)
2.
Program B (the main program) Memory required to execute with typical data: 114 Megabytes, depending on the size of the input file. Typical running time: 1.60 s.
3.
Program C Memory required to execute with typical data: 215 Megabytes, depending on the size of the input file. Typical computation time: 27.26 s for cast-5, 101.87 s for cast-6.
  相似文献   

17.
We present an algorithm for the derivation of Dyson-Schwinger equations of general theories that is suitable for an implementation within a symbolic programming language. Moreover, we introduce the Mathematica package DoDSE1 which provides such an implementation. It derives the Dyson-Schwinger equations graphically once the interactions of the theory are specified. A few examples for the application of both the algorithm and the DoDSE package are provided.

Program summary

Program title: DoDSECatalogue identifier: AECT_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECT_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 105 874No. of bytes in distributed program, including test data, etc.: 262 446Distribution format: tar.gzProgramming language: Mathematica 6 and higherComputer: all on which Mathematica is availableOperating system: all on which Mathematica is availableClassification: 11.1, 11.4, 11.5, 11.6Nature of problem: Derivation of Dyson-Schwinger equations for a theory with given interactions.Solution method: Implementation of an algorithm for the derivation of Dyson-Schwinger equations.Unusual features: The results can be plotted as Feynman diagrams in Mathematica.Running time: Less than a second to minutes for Dyson-Schwinger equations of higher vertex functions.  相似文献   

18.
This work presents a new version of a software package for the study of chaotic flows, maps and fractals [1]. The codes were written using Scilab, a software package for numerical computations providing a powerful open computing environment for engineering and scientific applications. It was found that Scilab provides various functions for ordinary differential equation solving, Fast Fourier Transform, autocorrelation, and excellent 2D and 3D graphical capabilities. The chaotic behaviors of the nonlinear dynamics systems were analyzed using phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropy. Various well-known examples are implemented, with the capability of the users inserting their own ODE or iterative equations.

New version program summary

Program title: Chaos v2.0Catalogue identifier: AEAP_v2_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAP_v2_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 1275No. of bytes in distributed program, including test data, etc.: 7135Distribution format: tar.gzProgramming language: Scilab 5.1.1. Scilab 5.1.1 should be installed before running the program. Information about the installation can be found at http://wiki.scilab.org/howto/install/windows.Computer: PC-compatible running Scilab on MS Windows or LinuxOperating system: Windows XP, LinuxRAM: below 150 MegabytesClassification: 6.2Catalogue identifier of previous version: AEAP_v1_0Journal reference of previous version: Comput. Phys. Comm. 178 (2008) 788Does the new version supersede the previous version?: YesNature of problem: Any physical model containing linear or nonlinear ordinary differential equations (ODE).Solution method:
1.
Numerical solving of ordinary differential equations for the study of chaotic flows. The chaotic behavior of the nonlinear dynamical system is analyzed using Poincare sections, phase-space maps, autocorrelation functions, power spectra, Lyapunov exponents and Kolmogorov-Sinai entropies.
2.
Numerical solving of iterative equations for the study of maps and fractals.
Reasons for new version: The program has been updated to use the new version 5.1.1 of Scilab with new graphical capabilities [2]. Moreover, new use cases have been added which make the handling of the program easier and more efficient.Summary of revisions:
1.
A new use case concerning coupled predator-prey models has been added [3].
2.
Three new use cases concerning fractals (Sierpinsky gasket, Barnsley's Fern and Tree) have been added [3].
3.
The graphical user interface (GUI) of the program has been reconstructed to include the new use cases.
4.
The program has been updated to use Scilab 5.1.1 with the new graphical capabilities.
Additional comments: The program package contains 12 subprograms.
interface.sce - the graphical user interface (GUI) that permits the choice of a routine as follows
1.sci - Lorenz dynamical system
2.sci - Chua dynamical system
3.sci - Rosler dynamical system
4.sci - Henon map
5.sci - Lyapunov exponents for Lorenz dynamical system
6.sci - Lyapunov exponent for the logistic map
7.sci - Shannon entropy for the logistic map
8.sci - Coupled predator-prey model
1f.sci - Sierpinsky gasket
2f.sci - Barnsley's Fern
3f.sci - Barnsley's Tree
Running time: 10 to 20 seconds for problems that do not involve Lyapunov exponents calculation; 60 to 1000 seconds for problems that involve high orders ODE, Lyapunov exponents calculation and fractals.References:
[1]
C.C. Bordeianu, C. Besliu, Al. Jipa, D. Felea, I. V. Grossu, Comput. Phys. Comm. 178 (2008) 788.
[2]
S. Campbell, J.P. Chancelier, R. Nikoukhah, Modeling and Simulation in Scilab/Scicos, Springer, 2006.
[3]
R.H. Landau, M.J. Paez, C.C. Bordeianu, A Survey of Computational Physics, Introductory Computational Science, Princeton University Press, 2008.
  相似文献   

19.
In this paper we present the package S@M (Spinors@Mathematica) which implements the spinor-helicity formalism in Mathematica. The package allows the use of complex-spinor algebra along with the multi-purpose features of Mathematica. The package defines the spinor objects with their basic properties along with functions to manipulate them. It also offers the possibility of evaluating the spinorial objects numerically at every computational step. The package is therefore well suited to be used in the context of on-shell technology, in particular for the evaluation of scattering amplitudes at tree- and loop-level.

Program summary

Program title: S@MCatalogue identifier: AEBF_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBF_v1_0.htmlProgram obtainable from: CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 14 404No. of bytes in distributed program, including test data, etc.: 77 536Distribution format: tar.gzProgramming language: MathematicaComputer: All computers running MathematicaOperating system: Any system running MathematicaClassification: 4.4, 5, 11.1Nature of problem: Implementation of the spinor-helicity formalismSolution method: Mathematica implementationRunning time: The notebooks provided with the package take only a few seconds to run.  相似文献   

20.
The Mathematica toolkit AMBRE derives Mellin-Barnes (MB) representations for Feynman integrals in d=4−2ε dimensions. It may be applied for tadpoles as well as for multi-leg multi-loop scalar and tensor integrals. The package uses a loop-by-loop approach and aims at lowest dimensions of the final MB representations. The present version works fine for planar Feynman diagrams. The output may be further processed by the package MB for the determination of its singularity structure in ε. The AMBRE package contains various sample applications for Feynman integrals with up to six external particles and up to four loops.

Program summary

Program title:AMBRECatalogue identifier:ADZR_v1_0Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZR_v1_0.htmlProgram obtainable from:CPC Program Library, Queen's University, Belfast, N. IrelandLicensing provisions:standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.:21 387No. of bytes in distributed program, including test data, etc.:100 004Distribution format:tar.gzProgramming language:MATHEMATICA v.5.0 and later versionsComputer:allOperating system:allRAM:sufficient for a typical installation of MATHEMATICAClassification:5; 11.1External routines:The examples in the package use:
-
MB.m [M. Czakon, Comput. Phys. Commun. 175 (2006) 559 (CPC Cat. Id. ADYG)], for expansions in ε;
-
CUBA [T. Hahn, Comput. Phys. Commun. 168 (2005) 78 (CPC Cat. Id. ADVH)], for numerical evaluation of multidimensional integrals;
-
CERNlib [CERN Program Library, http://cernlib.web.cern.ch/cernlib/], for the implementation of Γ and Ψ functions in Fortran.
Nature of problem:Derivation of a representation for a Feynman diagram with L loops and N internal lines in d dimensions by Mellin-Barnes integrals; the subsequent evaluation, after an analytical continuation in ε=(4−d)/2, has to be done with other packages.Solution method:Introduction of N Feynman parameters xi, integration over the loop momenta, and subsequent integration over x, introducing thereby representations of sums of monomials in x by Mellin-Barnes integrals.Restrictions:Limited by the size of the available storage space.Running time:Depending on the problem; usually seconds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号