首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 406 毫秒
1.
径流叶片扩压器的优化设计对提高离心风机的静压效率有重要作用。基于NACA65平面叶栅试验数据和叶栅保角变换方法,建立径流叶片扩压叶栅的气动设计方法,解决了径流叶栅气动设计中基准叶型的转换问题。通过对叶型的参数化和应用遗传算法的优化,可以进一步优化叶片安装角和局部型线,控制叶片表面的流动分布,降低叶栅总压损失和出口气流落后角,相关算例证明了本文方法的可行性。  相似文献   

2.
对一典型涡轮静叶型开展了叶片正弯曲对涡轮叶栅流场性能影响的试验研究。测量了直叶栅和 +10°、+2 0°、+30°弯曲叶片叶栅出口流场。结果表明 ,对该叶型叶栅 ,随着叶片正弯曲角的增加 ,通道涡一直位于叶栅端壁附近 ,其强度变化很小 ,但叶栅出口尾缘涡明显增强 ,并向叶栅中部扩展 ;同时 ,随着叶片正弯曲角的增加 ,叶栅端部总损失变化不大 ,但叶栅中部总损失迅速增加 ,导致叶栅总损失随叶片正弯曲角的增加而增大 ,直叶片叶栅总损失最小  相似文献   

3.
低展弦比涡轮静叶栅叶片正弯曲作用的试验研究   总被引:2,自引:0,他引:2  
对弯曲叶片研究中代表性的HIT涡轮静叶型重新开展了叶片弯曲对低展弦比涡轮静叶栅流场影响的试验研 究。测量了直叶片叶栅、+10°、+20°和+30°弯曲叶片叶栅的进、出口流场,分析了叶片弯曲对叶栅出口二次流、 总压损失和气流角的影响。结果表明:对该叶型叶栅,叶片正弯曲既不能大幅度降低叶栅二次流损失,也不能改 善叶栅出口气流角沿叶高的分布:叶栅出口二次流动、尾缘涡及壁角涡随叶片正弯曲角的增大而增强,而通道涡 强度和位置变化不大;该研究结果同以往有关文献的研究结果完全不同。  相似文献   

4.
为了提高压气机叶栅的气动性能,本文针对高负荷串列叶栅进行数值模拟,研究了叶片正弯和串列叶栅对角区失速和叶尖泄漏流的耦合作用.结果表明,在串列叶栅前叶排存在比较严重的角区失速,叶片正弯能有效控制高负荷串列叶栅中的角区失速,在最优工况叶栅总损失降低了37.6%.串列叶栅中只有"前排叶片弯曲"的方案能取得与"两排叶片都弯曲"...  相似文献   

5.
对一典型涡轮静叶型开展了叶片反弯曲对涡轮静叶栅流场性能影响的试验研究。测量了直叶片叶栅和-10°、-20°弯曲叶片叶栅出口流场。结果表明,对该叶型叶栅,随着叶片反弯曲角的增加,叶栅出口通道涡的强度和尺度稍有增大,但位置变化不太明显,尾缘涡有所减弱,叶栅中部和端部横向二次流均增强;随着叶片反弯曲角的增加,叶栅中部损失变化不大,而端部附近损失明显增大,使叶栅总损失增大,直叶栅总损失最小。  相似文献   

6.
使用CFD软件对某高能头半开式离心压缩机的级,在分别采用无叶扩压器和串列扩压器时进行了流动模拟和性能分析,给出了两种情况下的流场分布和性能比较。结果表明,在高能头系数的级中采用串列扩压器可以有效地改善叶轮出口流场,减少流动损失,提高压力恢复系数和级效率。  相似文献   

7.
为精简附面层抽吸结构、提升吸附式压气机的工程应用性,提出将串列叶栅技术与端壁附面层抽吸技术相结合的主/被动流动联合控制技术。以某多级高负荷吸附式压气机末级静子作为研究对象,借助数值模拟的方法,探讨串列叶栅技术、端壁附面层抽吸技术以及主/被动流动联合控制技术对原型扩压叶栅内部流场结构及气动损失的影响。研究结果表明,主/被动流动联合控制技术结合了两种流动控制技术的优势,对原型高负荷扩压叶栅内部复杂流动的控制效果明显优于单一流动控制技术,通过应用更少的附面层抽吸量,有效地抑制了角区失速的促发,缓解了二维叶型分离流动,叶栅出口参数沿展向分布更为均匀,当端壁附面层抽吸总量为进口流量的0.90%时,总压损失降低了59%。  相似文献   

8.
叶轮分流叶片周向位置改变,将对叶轮与扩压器内部流场产生干扰。对带分流叶片离心压缩机叶轮及扩压器流场进行数值模拟,结果表明:当叶轮匹配叶片扩压器,分流叶片向主叶片吸力面偏置较居中时,叶轮进出口压比降低3.66%,平均出口气流角增加1.54°;分流叶片向主叶片压力面偏置相比于居中,叶轮进出口压比增加1.85%,平均出口气流角增加2.09°,分流叶片吸力面侧低能区减小,气流分离受到抑制,叶轮效率提高。因此分流叶片向主叶片压力面偏置有利于提高叶轮性能。但由于分流叶片偏置后叶轮平均出口气流角较居中时变大,对扩压器叶片形成正冲角,在叶片背弧处产生了分离涡,造成扩压器内流场混乱,使扩压器效率降低。因此,分流叶片偏置后与之相匹配的扩压器叶片的安装角也要相应改变,以抑制扩压器内的分离涡及二次流,提高整级效率。  相似文献   

9.
《机械科学与技术》2017,(9):1452-1457
针对压气机叶栅角区流动易分离的特点,提出一种在叶栅前缘安装小叶片来抑制角区分离的新型流动控制方法。在利用叶栅试验数据确认数值模拟的可靠性后,对不同攻角下安装小叶片前后叶栅的流场特性进行了数值研究。结果表明:在-6°到9°攻角范围内小叶片改善了扩压叶栅的气动性能,使得总压损失减小,静压升增大。小叶片能使叶栅角区前缘分离点后移,角区分离线后的反流区面积减小,改善了角区流动;更多的流体汇聚到中间叶高,增强叶中部载荷,提高了叶栅的扩压能力。  相似文献   

10.
刘瑞韬  徐忠 《风机技术》2003,(2):3-5,46
对由半开式叶轮和叶片扩压器组成的离心压缩机模型级内部的流动进行了数值模拟,分析了叶轮与叶片扩压器内部的流动情况及相互影响。结果表明,用半开式叶轮代替模拟级中的闭式三元叶轮后,流动情况严重恶化,级出口静压系数降低;与无叶扩压器相比,叶片扩压器使级出口压力系数升高。在相同叶轮出口速度下,叶片扩压器比无叶扩压器中气流速度下降迅速,叶轮出口处平均流场趋于均匀。  相似文献   

11.
The losses at off-design points from a compressor cascade occur due to the deviation from a design incidence angle at the inlet of the cascade. The self-noise from the blade cascade at off-design points comes from a separated boundary layer and vortex sheddings. If the incidence angle to the cascade increases, stalling in blades may occur and the noise level increases significantly. This study applied Large-Eddy Simulations (LES) using deductive and deductive dynamic SGS models to low Mach-number, turbulent flow with each incidence angle to the cascade ranging from −40° to +20°, and compared numerical predictions with measured data. It was observed that the oscillating separation bubbles attached to the suction surface do not modify wake flows dynamically for cases of negative incidence angles. However, an incidence angle greater than 8° caused a separated vortex near the leading edge to be shed downstream and created stalling. The computed performance parameters such as drag coefficient and total pressure loss coefficient showed good agreement with experimental results. Noise from the cascade of the compressor is summarized as sound generated by a structure interacting with unsteady, turbulent flows. The hybrid method using acoustic analogy was observed to closely predict the measured overall sound powers and directivity patterns at design and off-design points of blade cascade.  相似文献   

12.
采用一种新型的环面叶栅计算方法对两级低速压气机中径处的非定常流动情况进行了数值模拟,针对第二排静叶在一个栅距内的8个不同的时序位置下,同时移动动叶在轴向相对位置,通过数值计算结果表明:在两级静叶间轴向间距不变的情况下,动叶的轴向位置对上游静叶尾迹输运过程有显著影响,在三个CASE计算中,动叶后移时,压气机效率整体最高.轴向间距的缩短对提高整机效率有益.此外环面叶栅计算结果跟平面叶栅结果总体上趋于一致,最高、最低时序位置也相同,但流场信息更为丰富合理;相对于通常的单流道计算,环面叶栅方法更能全面反映全流道周向流动情况,从而为叶轮机械设计及前后叶排间相互干涉研究提供理论依据.  相似文献   

13.
A linear cascade experimental apparatus often consists of only a few cascade blades. Advantages to this experimental arrangement are increased by the use of larger cascade blades, a lower mass flow rate, a corresponding decrease in required power, and easier optical access within the cascade passage. However, fewer cascade blades in the cascade row make it difficult to establish periodic flow conditions between blades compared to infinite cascade model experiments. Generally, removing fluid from the cascade walls or adjusting tailboards located downstream of the cascade are common methods to establish periodic flow conditions through the cascade blades. In this study, a passage for cascade experiments is designed to satisfy infinite cascade flow conditions without any flow control or tailboards. A one-pitch at cascade row is adopted as its width and only a single cascade blade is installed within the passage. The surface isentropic Mach number distribution on the blade is chosen for the existence of infinite cascade flow conditions, and 14 geometric design variables related to the passage shape are applied to the design of a one-pitch passage by using a genetic algorithm. Flow structures within a passage designed using a genetic algorithm match with those obtained with the infinite cascade flow condition. Computed results obtained with a single cascade blade show that infinite cascade flow conditions can be obtained by modifying only the passage walls of the cascade experimental apparatus.  相似文献   

14.
Partial admission has advantages over full admission for some operating conditions of turbine. However, additional losses such as expansion, mixing, or pumping are generated in partial admission compared to full admission. Thus, an experiment was conducted in a linear cascade apparatus having a partial admission region in order to investigate the effect of partial admission on a blade row. The admission region was formed by a spouting nozzle installed at the inlet of the linear cascade apparatus. Its cross section was circular, and its diameter was 180 mm. The nozzle was set to have a flow angle of 65°. The tested blade was axial-type, and its chord was 200 mm. The experiment was conducted at a Reynolds number of 3 × 105 based on the chord. One blade row of nineteen identical blades was applied to the linear cascade for the partial admission experiment, and this blade row moved along the pitchwise direction in front of the admission region. The operating forces and surface pressures on a blade were measured along the direction at the steady state. For investigating the effect of solidity, three different solidities of 1.25, 1.38, and 1.67 were applied to the blade row. From the experimental results, the maximum rotational force and axial force increased for a larger solidity.  相似文献   

15.
Tao  Yi  Yuan  Shouqi  Liu  Jianrui  Zhang  Fan  Tao  Jianping 《机械工程学报(英文版)》2016,29(6):1209-1217

As the critical component, the impellers of the slurry pumps usually have blades of a large thickness. The increasing excretion coefficient of the blades affects the flow in the impeller resulting in a relatively higher hydraulic loss, which is rarely reported. In order to investigate the influence of blade thickness on the transient flow characteristics of a centrifugal slurry pump with a semi-open impeller, transient numerical simulations were carried out on six impellers, of which the meridional blade thickness from the leading edge to trailing edge varied from 5-10 mm, 5-15 mm, 5-20 mm, 10-10 mm, 10-15 mm, and 10-20 mm, respectively. Then, two of the six impellers, namely cases 4 and 6, were manufactured and experimentally tested for hydraulic performance to verify the simulation results. Results of these tests agreed reasonably well with those of the numerical simulation. The results demonstrate that when blade thickness increases, pressure fluctuations at the outlet of the impeller become severe. Moreover, the standard deviation of the relative velocity in the middle portion of the suction sides of the blades decreases and that at the outlet of the impeller increases. Thus, the amplitude of the impeller head pulsation for each case increases. Meanwhile, the distribution of the time-averaged relative flow angle becomes less uniform and decreases at the outlet of the impeller. Hence, as the impeller blade thickness increases, the pump head drops rapidly and the maximum efficiency point is offset to a lower flow rate condition. As the thickness of blade trailing edge increases by 10 mm, the head of the pump drops by approximately 5 m, which is approximately 10 % of the original pump head. Futhermore, it is for the first time that the time-averaged relative flow angle is being considered for the analysis of transient flow in centrifugal pump. The presented work could be a useful guideline in engineering practice when designing a centrifugal slurry pump with thick impeller blades.

  相似文献   

16.
Flow characteristics of turbulent pulsating flows in a square-sectional curved duct were experimentally investigated. Experimental studies for air flow were conducted to measure axial velocity profiles, secondary flow and pressure distributions in a square-sectional 180° curved duct by using an LDV system with a data acquisition and processing system which includes a Rotating Machinery Resolve (RMR) and PHASE software. Measurements were made at the seven cross-sections from the inlet (ø=0°) to the outlet (ø=180°) of the duct with 30° intervals. Pressure was measured by using a magnetic differential pressure gage. The experiment was conducted in nineteen sections from the inlet to the outlet of the duct at 10° intervals.Velocity profiles for turbulent pulsating flows were large at the outer wall for a bend angle of ø=30° because of the centrifugal force. The velocity profiles were similar to those of turbulent steady flows. The secondary flow of the turbulent pulsating flow had a positive value at a bend angle of 150° without regarding the phase. The dimensionless value of the secondary flow became gradually weak and approached to zero in the region of a bend angle of 180° regardless of the ratio of velocity amplitude. The pressure difference of turbulent pulsating flows was the largest near the region of a bend of angle of 90° in the case of the middle region and became small beyond 90.  相似文献   

17.
不同叶轮形式下离心泵整机非定常流场的数值研究   总被引:13,自引:1,他引:12  
针对无短叶片、有长短叶片和短短叶片三种叶轮的离心泵,采用非定常CFD方法数值分析了设计工况点的整机全三维流场,讨论了不同叶片形式对水泵扬程、进出口压力波动及叶片表面和中央回转面内参数分布的影响。其中,与无短叶片情况相比较,详细分析了短叶片的有无和短叶片尺寸对泵内流场的影响;并对一个压力波动周期内,由于叶片和蜗舌相对位置不同内部流场的变化给出了相应的分析结果。从动力学角度对降低水泵的振动和噪声提供了有益的分析结果。  相似文献   

18.
提出一种非接触式多圈角度传感器的实现方法。当与被测旋转物体轴向相连的径向磁化永磁体在与其平行的霍尔传感芯片上方旋转时,基于霍尔原理,传感芯片会输出关于旋转角度的相互正交的两路电压信号,经过单片机进行反正切运算可以得到0°~360°范围的角度信息。结合超级电容及外扩存储器,能够实现角度的多圈测量。利用此方法设计制作了样机,实验证明此方法能够实现精度±0.2°的角度测量和多圈的可靠计数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号