首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
叶片出口角对离心油泵性能的影响   总被引:4,自引:2,他引:2  
对65Y60型离心油泵输送粘油和清水时叶片出口角对泵性能的影响进行了实验研究。研究表明,出口角对扬程的影响与被输送液体的粘度纱大,改变出口角是调整离心油泵扬程的有效方法。输送粘度较低的液体时,出口角对泵效率的影响较小;输送粘度较高的液体时,出口角对泵效率的影响较大。出口角主要是通过减小理论扬的倾斜来提高扬程的。  相似文献   

2.
出口角对离心油泵性能影响的理论研究   总被引:1,自引:1,他引:1  
利用流体力学基本理论,研究了不同粘度下出口角对65Y60型离心油泵性能的影响。结果表明,液体粘度增加使离心油泵性能下降的根本原因是泵水力效率和机械效率随粘度增大而大幅度下降造成的。当液体粘度较低时,叶轮对离心油泵性能的影响是主要的;当液体粘度较高时,蜗壳对离心油泵性能的影响是主要的。当液体粘度较高时,叶轮扩散损失、叶轮摩擦损失、蜗壳水力损失和叶轮圆盘摩擦损失是离心油泵的主要能量损失。计算得出的不同粘度下出口角对泵性能影响的规律与实验得出的变化规律基本一致。  相似文献   

3.
针对一款轴流式子午加速风机,利用数值模拟的方法,研究了串列动叶前后叶片在不同相对周向位置下的风机性能。通过分析得出了改变串列动叶前后叶片周向相对位置,可以降低风机的流量和压比,其调节效果相当于降低风机转速;且注意到串列动叶前后叶片周向相对位置,对风机稳定工作范围有较大影响,合理选择串列动叶前后叶片周向相对位置,可以有效扩大风机的稳定工作范围。  相似文献   

4.
以空调用多翼离心风机为研究对象,建立了3组不同叶片出口角叶轮模型,通过数值模拟获得风机外特性以及叶轮中间截面、风机出口的压力,速度,湍动能分布和叶轮进出口的压力脉动情况,并进行对比分析。结果表明:随着叶片出口角的增大,在420~725 m~3/h流量范围内风机的风压和效率有所提升;内部流场中,风机出口低速区的面积增大,蜗壳出口和蜗舌区域的总压分布均匀性降低,叶轮流道内的涡量增多;叶轮进出口在叶频及其倍频处的压力脉动幅值有一定程度的降低。为了得到较好的气动性能和噪声性能的风机,需要将叶片出口角控制在合理的范围之内。研究结果对于风机进行气动性能和降噪性能设计具有较好的指导意义。  相似文献   

5.
《机械科学与技术》2017,(9):1452-1457
针对压气机叶栅角区流动易分离的特点,提出一种在叶栅前缘安装小叶片来抑制角区分离的新型流动控制方法。在利用叶栅试验数据确认数值模拟的可靠性后,对不同攻角下安装小叶片前后叶栅的流场特性进行了数值研究。结果表明:在-6°到9°攻角范围内小叶片改善了扩压叶栅的气动性能,使得总压损失减小,静压升增大。小叶片能使叶栅角区前缘分离点后移,角区分离线后的反流区面积减小,改善了角区流动;更多的流体汇聚到中间叶高,增强叶中部载荷,提高了叶栅的扩压能力。  相似文献   

6.
对高压比跨音轴流压气机转子流动分析,论证了在10%~ 90%叶高范围内转子叶片采用二维设计方法是可行的.采用数值模拟方法,对超音、高亚音转子回转面叶栅进行全工况气动性能计算,研究密流比对于压气机叶栅气动性能的影响规律.结果 表明:密流比增加,超音叶栅总压比和效率均增大,结尾正激波前移,耐反压能力下降;高亚音转子叶栅气流...  相似文献   

7.
对组装式离心压缩机某模型级的实验装置进行了数值模拟。通过对模型级原结构及流场的分析,进行了多种焊接型式排气蜗壳方案的改进设计,并通过对比分析,得到比较理想的焊接排气蜗壳设计方案,实现级效率提高约4%。  相似文献   

8.
为了提高压气机叶栅的气动性能,本文针对高负荷串列叶栅进行数值模拟,研究了叶片正弯和串列叶栅对角区失速和叶尖泄漏流的耦合作用.结果表明,在串列叶栅前叶排存在比较严重的角区失速,叶片正弯能有效控制高负荷串列叶栅中的角区失速,在最优工况叶栅总损失降低了37.6%.串列叶栅中只有"前排叶片弯曲"的方案能取得与"两排叶片都弯曲"...  相似文献   

9.
离心油泵叶轮出口角的选取   总被引:1,自引:0,他引:1  
以理论扬程为目标函数,考虑粘度对离心油泵基本公式中滑移系数、理论流量的影响进行离心油泵叶轮最佳出口角的选取。研究表明,粘度使离心油泵的最佳出口角和理论扬程加大,因此离心油泵的优化设计中应考虑粘度的影响。  相似文献   

10.
本文选取定型产品比转速为47的65Y60型离心油泵为研究对象,对叶片出口角分别为15°、25°、45°和60°的4个叶轮进行切割,研究了输送水和粘油时泵性能随叶片出口角、叶轮直径的变化规律。结果表明,在各种叶轮直径和液体粘度条件下,叶片出口角对扬程、轴功率曲线的斜率和效率曲线的形状都有较大影响。叶轮切割到某一直径,例如205mm时,泵效率非但不降,反而升高,最多升高6%。滑移系数、水力效率、容积效率和机械效率都与叶轮直径和液体粘度有关。受液体粘度的影响,最优工况切割指数与现有理论值都不同,粘度越大,差别越大。叶片出口角越大,切割指数曲线的变动范围越窄,其最优工况参数因叶轮切割而受到的影响越小。  相似文献   

11.
离心压缩机叶轮分流叶片对性能的影响   总被引:1,自引:0,他引:1  
某离心压缩机三元流叶轮由于在入口处无加工空间,因此改为带有分流叶片的叶轮。为了验证改造后的叶轮是否满足设计参数以及和原始叶轮的异同,采用了数值方法对原始叶轮和改造后的叶轮进行了数值分析。结果表明,两种均满足设计要求,并且改造后的叶轮性能要好于原始叶轮。这是由于原始叶轮在入口处的相对马赫数较大,因此所引起的摩擦损失也略大。  相似文献   

12.
分流叶片对离心压缩机性能影响的数值分析   总被引:1,自引:0,他引:1  
兰江  王辉 《风机技术》2014,(2):19-24
以一种高压比离心式空气压缩机为研究对象,主要针对不同的分流叶片长度,采用商用软件ANSYS-CFX 对其叶轮内部三维流场进行数值模拟计算。计算结果表明,应用分流叶片可以不同程度提升该压缩机的整体性能,最大可提高效率2%以上。通过对比各计算结果的熵分布云图,分析了分流叶片长度对压缩机性能造成影响的原因。  相似文献   

13.
为了对B2/D2=0.22叶轮的高效离心通风机模型扩展应用,得到在此模型基础上大流量区压力提升,小流量区压力下降的性能,进行了叶轮叶片改变出口安装角的性能试验研究,并将改变出口安装角后得到的性能曲线的变化规律进行了理论分析和探讨。证明其变化规律与离心通风机基本理论相吻合。  相似文献   

14.
介绍了离心泵性能试验的试验装置和试验方法,通过对一台离心泵的试验,给出了水泵在改变其叶轮出口角时各参数的稳态性能曲线,并对其进行了分析。  相似文献   

15.
使用CFD软件对某高能头半开式离心压缩机的级,在分别采用无叶扩压器和串列扩压器时进行了流动模拟和性能分析,给出了两种情况下的流场分布和性能比较。结果表明,在高能头系数的级中采用串列扩压器可以有效地改善叶轮出口流场,减少流动损失,提高压力恢复系数和级效率。  相似文献   

16.
多级离心压缩机级间弯道与回流器内流动的数值研究   总被引:2,自引:0,他引:2  
王企鲲  陈康民  戴韧 《流体机械》2005,33(11):8-12,87
对某型多级离心压缩机的气动性能进行了CFD数值研究,计算方法基于Jameson格式,湍流模型选择BaldwinLomax模型.对弯道与回流器等多级压缩机级间的静止部件内的气动特点进行研究,旨在揭示气流经弯道与回流器后气动参数的变化特征.结果表明,不同位置的弯道对流动的影响是截然不同的.由于这些静止部件对流体的扰动,使次级动叶的进口来流工况点偏离设计值,易于造成对整机气动性能的下降.因此多级压缩机的动叶设计应对来流的不均匀性加以充分考虑.  相似文献   

17.
18.
通过建立离心压缩机模型级(包括叶轮、无叶扩压器和回流器)的数值计算模型,利用Numeca软件对其内部流场进行数值模拟及变工况计算,得到该级的变工况性能曲线及内部流场信息。经过变工况性能分析和流场分析,发现由冲角公式反推出的回流器进口宽度过大,导致其叶片吸力面侧流动分离,产生漩涡。针对这一问题,适当减小回流器进口宽度,并进行相应的建模、网格划分和数值计算,得到改进后的变工况性能曲线及三维流场信息,较原结构有明显改善。  相似文献   

19.
对某离心压缩机模型级6种不同的叶顶间隙形态的流场进行了数值模拟,分析了叶顶间隙形态对离心压缩机模型级整级气动性能的影响,详细分析了不同间隙形态内部的流动结构。研究结果表明:由于叶顶间隙的存在,在整个工况范围内级压比,多变效率,能量头相比无间隙时都有较大幅度下降,特别在大流量区下降更加明显,而且不同的间隙形态对级性能的影响也不同,与无间隙相比间隙1在设计工况点压比下降1.77%,多变效率下降0.65%,能量头下降3.08%,间隙4在设计工况点压比下降4.38%,多变效率下降2.41%,能量头下降7.08%,而间隙2,3,5,6的间隙值在间隙1和间隙4之间,其整级气动性能也介于间隙1和间隙4之间,其中间隙3和间隙5的整级气动性能要优于间隙2和间隙6。  相似文献   

20.
采用CFD手段对某离心压缩机级性能在轴向和径向两种不同的进气方式下进行了数值模拟,得出了在这两种进气方式下离心压缩机在3种机器马赫数下的级性能。分析了由于径向吸气室引起的叶轮进口流动参数周向分布不均匀而引起的级性能恶化以及叶轮对吸气室内流动的影响,得出了3点结论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号