首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The He–Xe gas-cooled, S4 reactor has a sectored, Mo–14%Re solid core for avoidance of single point failures in reactor cooling and Closed Brayton Cycle (CBC) energy conversion. The reactor core is loaded with UN fuel and each of its three sectors is thermal-hydraulically coupled to a separate CBC loop and radiator panels. The solid core minimizes voids, and the BeO reflectors are designed to easily disassemble upon impact, ensuring that the bare S4 reactor is sufficiently subcriticial when submerged in wet sand or seawater and flooded with seawater, following a launch abort accident. Spectral shift absorber (SSA) additives in the core and thin SSA coatings on the outer surface of the core can also be used to ensure subcriticality in such an accident. This paper investigates the effects of various SSAs (Re, Ir, Eu-151, B-10 and Gd-155) on the temperature and burnup reactivity coefficients and the operating lifetime of the S4 reactor at a steady thermal power of 550 kW. The calculations of the burnup, reactivity feedback coefficient used a mixture of the top 10 light and top 10 heavy fission products plus Sm-149 and are performed for isothermal reactor core and reflector temperatures of 1200 and 900 K. In this fast spectrum space reactor, SSAs markedly increase fuel enrichment and decrease the burnup reactivity coefficient, but only slightly decrease the temperature, reactivity feedback coefficient. With no SSAs, the UN fuel enrichment is lowest (58.5 wt.%), the temperature and burnup reactivity coefficients are the highest (−0.2709 ¢/K and −1.3470 $/at.%), and the estimated operating lifetime is the shortest (7.6 years). The temperature and burnup reactivity coefficients decrease to −0.2649 ¢/K and −1.0230 $/at.%, and the operating lifetime increases to 8.3 years when rhenium additives are used. With europium-151 and gadolinium-155 additions, fuel enrichment (91.5 and 94 wt.%) and operating lifetime (9.9 and 9.8 years) are the highest and both the temperature reactivity feedback coefficient (−0.2382 and −0.2447 ¢/K) and the burnup reactivity coefficient (−0.9073 and −0.8502 $/at.%) are the lowest.  相似文献   

2.
本文研究了一种空间锂冷概念快堆的堆芯中子学特性。反应堆燃料采用氮化铀,冷却剂采用7Li液态金属,主要结构材料采用W-25%Re。反应堆的控制靠反射层内的控制鼓来实现。建立了程序的计算模型,通过计算和分析,给出了堆芯的主要尺寸和物理参数,计算了堆芯的控制鼓价值、燃耗和功率分布。分析了堆芯中Re的谱移吸收特性和满功率运行7 a不需换料的性能,谱移吸收特性能确保反应堆在发射失败浸在水或湿沙中时处于次临界状态。  相似文献   

3.
The Submersion-Subcritical Safe Space (S4) reactor, developed for future space power applications and avoidance of single point failures, is presented. The S4 reactor has a Mo–14% Re solid core, loaded with uranium nitride fuel, cooled by He–30% Xe and sized to provide 550 kWth for 7 years of equivalent full power operation. The beryllium oxide reflector of the S4 reactor is designed to completely disassemble upon impact on water or soil. The potential of using Spectral Shift Absorber (SSA) materials in different forms to ensure that the reactor remains subcritical in the worst-case submersion accident is investigated. Nine potential SSAs are considered in terms of their effect on the thickness of the radial reflector and on the combined mass of the reactor and the radiation shadow shield. The SSA materials are incorporated as a thin (0.1 mm) coating on the outside surface of the reactor core and as core additions in three possible forms: 2.0 mm diameter pins in the interstices of the core block, 0.25 mm thick sleeves around the fuel stacks and/or additions to the uranium nitride fuel. Results show that with a boron carbide coating and 0.25 mm iridium sleeves around the fuel stacks the S4 reactor has a reflector outer diameter of 43.5 cm with a combined reactor and shadow shield mass of 935.1 kg. The S4 reactor with 12.5 at.% gadolinium-155 added to the fuel, 2.0 mm diameter gadolinium-155 sesquioxide interstitial pins, and a 0.1 mm thick gadolinium-155 sesquioxide coating has a slightly smaller reflector outer diameter of 43.0 cm, resulting in a smaller total reactor and shield mass of 901.7 kg. With 8.0 at.% europium-151 added to the fuel, along with europium-151 sesquioxide for the pins and coating, the reflector's outer diameter and the total reactor and shield mass are further reduced to 41.5 cm and 869.2 kg, respectively.  相似文献   

4.
Design concepts of the Sectored Compact Space Reactor for Small power (SCoRe-S) have been developed for the avoidance of single-point failures in reactor cooling and energy conversion and a wide range of thermal powers. These modular, fast neutron spectrum, lithium cooled reactors with 16.0 cm thick BeO radial reflector are designed for at least +$2.00 hot-clean excess reactivity, and with a sufficient reactivity shutdown margin. They employ 157GdN additives in the UN fuel and a 0.10 mm thick coating of 157Gd2O3 on the outer surface of the reactor vessel to ensure that the bare reactors, when submerged in wet sand and flooded with seawater following a launch abort accident, remain at least ?$1.00 subcritical. In addition to identifying the smallest SCoRe-S concept that satisfies the design reactivity requirements, the benefit of using a lunar regolith as a supplementary reflector to decrease the thickness of the BeO radial reflector and hence, the launch mass of the SCoRe-S concepts for a lunar outpost is investigated. Calculations performed using MCNP5 confirmed that SCoRe-S7 with a 16 cm thick BeO reflector is the smallest to satisfy the stated reactivity requirements. Results also show that a lunar regolith reflector alone is inadequate for this reactor to achieve a critical state at the beginning of life. However, when the regolith is used in conjunction with a BeO reflector of a reduced thickness, this reactor not only becomes critical, but also satisfies the reactivity design requirements at a significantly reduced launch mass. Using a supplementary reflector of regolith decreases the thickness of the BeO reflector for the SCoRe-S7 from 16 cm to 8.0 cm, and to 5.7 cm for the SCoRe-S11 of the largest core. The resulting decreases in the launch mass of the SCoRe-S concepts are ~34% or 150–200 kg.  相似文献   

5.
CERMET-SNRE堆芯物理计算分析   总被引:2,自引:1,他引:1  
核火箭发动机功率高、寿命长、比冲大,在执行深空探测和星际航行任务时具有不可替代的优势。小型化是核火箭发动机的一个重要趋势,基于此提出了一种使用钨基金属陶瓷燃料的小型核火箭发动机(CERMET-SNRE)堆芯方案,并采用蒙特卡罗程序(MCNP)进行了精确建模,计算了相关物理参数。计算分析结果表明:CERMET-SNRE堆芯能谱硬,燃耗浅,后备反应性足够,功率分布合理,控制鼓与安全棒价值足够,发射掉落事故下有效增殖因数小于0.98,堆芯方案合理,满足设计要求。  相似文献   

6.
Light water reactor (LWR) technology is nowadays the most successful commercial application of fission reactors for the production of electricity. However, in the next few years, nuclear industry will have to face new and demanding challenges: the need for sustainable and cheap sources of energy, the need for public acceptance, the need for even higher safety standards, the need to minimize the waste production are only a few examples. It is for these very reasons that a few next generation nuclear reactor concepts were selected for extensive research and development; super critical water reactors are among them. The use of a supercritical coolant would allow for higher thermal efficiencies and a more compact plant design, since steam generators, or steam separators and driers would not be needed, hence achieving a better economy. Moreover, because of the high heat capacity of supercritical water, relatively less coolant would be needed to refrigerate the reactor, therefore the feasibility to design a water cooled fast reactor: the supercritical water fast reactor (SCFR). This system presents unique features combining well-known fast and light water reactor characteristics in one design (e.g. a tendency to a positive void reactivity coefficient together with loss of coolant accident – LOCAs as a design basis accident). The core is in fact loaded with highly enriched MOX fuel (average plutonium content of 23%), and presents a peculiar and significant geometrical and material heterogeneity (use of radial and axial blankets, solid moderator layers, 12 different enrichment zones). The safety analysis of this very complex core layout, together with the optimization of the void reactivity effect through core design, is the main objective of this work.  相似文献   

7.
Nuclear safety analysis remains of crucial importance for both the design and the operation of nuclear reactors. Safety analysis usually entails the simulation of several selected postulated accidents, which can be divided into two main categories, namely reactivity insertion accident (RIA) and loss of flow accident (LOFA). In this paper, thermal-hydraulic simulations of fast LOFA accident were carried out on the new core configuration of the material test research reactor NUR. For this purpose, the nuclear reactor analysis PARET code was used to determine the reactor performance by calculating the reactor power, the reactivity and the temperatures of different components (fuel, clad and coolant) as a function of time. It was observed that during the transient the maximum clad temperature remained well below the critical temperature limit of 110 °C, and the maximum coolant temperature did not exceed the onset of nucleate boiling point of 120 °C. It is concluded that the reactor can be operated at full power level with sufficient safety margins with regard to such kind of transients.  相似文献   

8.
Regarding safety improvements for existing nuclear power plants, the TMI-2 accident is interesting because of the present commercial dominance of light water reactors (LWR). This accident demonstrated that the nuclear safety philosophy evolved over the years has to cover accident sequences involving massive core melt progression in order to develop reliable mitigation strategies for both, existing and advanced reactors. Although the TMI-2 core was reflooded, the results also appear applicable to the general melt progression phenomenology of most unrecovered (unreflooded) blocked core accident scenarios. Nevertheless, a large range in the initial conditions of core melt progression provides significant uncertainties in assessing the integrity of the lower head, the containment in severe reactor accidents, and the consequences of recovery actions in accident management, as well as core reflooding in particular. The probability of success of reflooding as an accident management strategy – in-vessel reflooding to terminate the accident and ex-vessel flooding to prevent reactor vessel melt-through – has to be assessed and discussed in detail.  相似文献   

9.
核反应堆电源具有寿命长、可全天候工作等特点,可作为星球表面及其他深空探测任务的电源。针对星球表面用核反应堆电源在发射过程中重返地面的临界安全问题,提出了星球表面用核反应堆的临界安全分析要求、分析假设与模型,并对反应堆临界安全特性及采取的临界安全措施进行了计算分析。计算结果表明,不同假设掉落环境下的星球表面用核反应堆的有效增殖因数均小于0.98,满足临界安全要求。反应堆通过采用Mo-14%Re合金结构材料、设置相对较厚的堆芯反射层以及在反射层包壳和堆芯外围涂覆Gd2O3涂层等措施有利于确保反应堆在事故时处于次临界状态。  相似文献   

10.
Since the accident at Fukushima Daiichi Nuclear Power Plant in 2011, design concepts for nuclear reactors have been reconsidered with much greater emphasis placed upon passive systems for decay-heat removal. By considering this issue, the design parameter conditions for high temperature gas-cooled reactors (HTGRs) with passive safety features of decay-heat removal were obtained by residual-heat transfer calculation using equations for fundamental heat transfer mechanisms in our previous works. In the present study, the appropriate size of reactor core for a 100 MWt reactor operating at 1123 K of the initial core temperature was found using the conditions. Consequently, neutronics and thermo-hydraulic analyses for the proposed reactor core were performed and the proper optimizations to control the excess reactivity and flatten the change in power peaking factor during operation were done successfully. By the systematic method to decide the core design which satisfies the condition for passive decay-heat removal, a long-life small HTGR concept whose excess reactivity was small during the operation was shown. The small excess reactivity is a significant advantage from the view point of safety in reactivity accident.  相似文献   

11.
12.
An analysis of the April 26, 1986 accident at the Chernobyl-4 nuclear power plant in the Soviet Union is presented. The peak calculated core power during the accident was 550 000 MWt. The analysis provides insights that further understanding of the plant behavior during the accident. The plant was modeled with the RELAP5/MOD2 computer code using information available in the open literature. RELAP5/MOD2 is an advanced computer code designed for best-estimate thermal-hydraulic analysis of transients in light water reactors. The Chernobyl-4 model included the reactor kinetics effects of fuel temperature, graphite temperature, core average void fraction, and automatic regulator control rod position. Preliminary calculations indicated the effects of recirculation pump coast down during performance of a test at the plant were not sufficient to initiate a reactor kinetics-driven power excursion. Another mechanism, or “trigger” is required. The accident simulation assumed the trigger was recirculation pump performance degradation caused by the onset of pump cavitation. Fuel disintegration caused by the power excursion probably led to rupture of pressure tubes. To further characterize the response of the Chernobyl-4 plant during severe accidents, simulations of an extended station blackout sequence with failure of all feedwater are also presented. For those simulations, RELAP5/MOD2 and SCDAP/MOD1 (an advanced best-estimate computer code for the prediction of reactor core behavior during a severe accident) were used. The simulations indicated that fuel rod melting was delayed significantly because the graphite acted as a heat sink.  相似文献   

13.
空间技术是具有重大潜在前景的技术,对国家的科学、国防、政治、经济具有重要意义。为了满足空间条件及发射条件的要求,并使空间核反应堆经济性最大化,对空间核反应堆本体的结构设计方案和参数最优化进行了研究。在调研多种国外空间核反应堆方案设计的基础上,提出了空间核反应堆堆型与堆本体结构设计方案。建立了堆本体数学模型,将设计最优化的工程学问题转化为求解非线性整数优化的数学问题,采用编写Matlab程序语言的方法,利用数学软件求解了最优化问题,在理论上得到了所建立模型的最优化参数设计并探讨了旋转控制鼓数量变化与堆芯燃料半径变化对堆本体总质量的影响。堆本体总质量较初始模型下降了14.3%,为今后完成更进一步的空间核反应堆设计提供了参考。  相似文献   

14.
Safety challenges for sodium-cooled fast reactors include maintaining core temperatures within design limits and assuring the geometry and integrity of the reactor core. Due to the high power density in the reactor core, heat removal requirements encourage the use of high-heat-transfer coolants such as liquid sodium. The variation of power across the core requires ducted assemblies to control fuel and coolant temperatures, which are also used to constrain core geometry. In a fast reactor, the fuel is not in the most neutronically reactive configuration during normal operation. Accidents leading to fuel melting, fuel pin failure, and fuel relocation can result in positive reactivity, increasing power, and possibly resulting in severe accident consequences including recriticalities that could threaten reactor and containment integrity. Inherent safety concepts, including favorable reactivity feedback, natural circulation cooling, and design choices resulting in favorable dispersive characteristics for failed fuel, can be used to increase the level of safety to the point where it is highly unlikely, or perhaps even not credible, for such severe accident consequences to occur.  相似文献   

15.
In order to ensure the safe operation of the nuclear power plants accident management programs are being developed around the world. These accident management programs cover the whole spectrum of accidents, including severe accidents. A lot of work is done to investigate the severe accident phenomena and implement severe accident management in NPPs with vessel-type reactors, while less attention is paid to channel-type reactors CANDU and RBMK.Ignalina NPP with RBMK-1500 reactor has implemented symptom based emergency operation procedures, which cover management of accidents until the core damage and do not extend to core damage region. In order to ensure coverage of the whole spectrum of accidents and meet the requirements of IAEA the severe accident management guidelines have to be developed.This paper presents the basic principles and approach to management of beyond design basis accidents at Ignalina NPP. In general, this approach could be applied to NPPs with RBMK-1000 reactors that are available in Russia, but the design differences should be taken into account.  相似文献   

16.
A new steady-state fast neutron test reactor has been conceptually designed. This paper presents a new concept for a CANDU-based fast test reactor that is horizontal in orientation, with individual pressure/Calandria tubes (PT/CT) running the entire length of the scattering-medium tank (Calandria) filled with Lead-Bismuth-Eutectic (LBE). This approach for a test reactor will provide more flexibility in refueling, sample removal, and ability to completely reconfigure the core to meet different users’ requirements. Full core neutronic analysis showed a small hexagonal reactor, LBE-cooled, trans-uranics (TRU)-67Zr fuel with HT-9 cladding and structures, with a core power of 100 MWth produced a fast flux (>0.1 MeV) of 1.4 × 1015 n/cm2 s averaged over the whole length of six irradiation channels with a total testing volume of more than 77 l. Loading of TRU from legacy UO2 spent fuel allowed core continuous operation for 180 effective full power days with a net fissile-Pu burning rate of 6.4%. Since high neutron fluence impact on PT/CT might be an issue of concern for this design, oxide dispersion strengthened (ODS) ferritic steel was used as PT/CT material without any impact on core neutronic behavior. An innovative shutdown/control system which consisted of the six outermost fuel channels was proven to be effective in shutting the core down when flooded with boric acid as a neutron absorber. The new shutdown/control system has the advantage of causing the minimum perturbation of the axial flux shape when the control channels are partially flooded with boric acid. A preliminary thermal-hydraulic analysis of LBE produced acceptable pumping power and clad temperature. Voiding the core from its LBE coolant resulted in a positive reactivity insertion which is typical of most fast reactors. Hypothetical accidents of draining the Calandria and/or the external LBE reflector tank of the LBE core resulted in negative reactivity insertion which shut the reactor down.  相似文献   

17.
小型移动式铅铋堆由于在海岛、偏远地区等场景的应用需要,整堆运输的安全可行性成为必要设计目标之一。基于小型移动式铅铋堆自身特点,采用谱移吸收材料的反应性控制手段进行反应性控制方案研究,以确保整堆运输的临界安全。利用MCNP软件计算在运输过程、堆芯进水事故工况下表面涂覆不同厚度Gd2O3涂层的燃料芯块的有效增殖系数(keff),其中涂层厚度为50μm时满足临界安全要求;分析加入谱移吸收材料后堆芯的燃耗特性、功率分布和传热,验证表明其不影响堆芯正常运行,确定了此种反应性控制方案的可行性。  相似文献   

18.
相比传统大型核电厂,微型反应堆各系统功能间紧密耦合且相互制约,传统的分专业解耦设计模式难以应对,需开展全范围的系统仿真。采用Modelica语言建立了气冷式微型反应堆的系统仿真模型,以未能紧急停堆的预期瞬态(ATWS)事故为例开展事故分析计算,并与专业堆芯安全分析结果对比,结果表明反应堆功率变化趋势较为一致,且ATWS事故后仅依靠堆芯温度升高引入的负反应性可实现停堆。本文研究方法为气冷式微型反应堆的全系统建模仿真打下了坚实基础,也为其他类型反应堆的系统建模仿真提供了很好的借鉴作用。   相似文献   

19.
This paper provides a review of the current state of the art on the topic of coupled neutronic-thermohydraulic instabilities in boiling water nuclear reactors (BWRs). The topic of BWR instabilities is of great current relevance since it affects the operation of a large number of commercial nuclear reactors. The recent trends towards introduction of high efficiency fuels that permit reactor operation in an extended operation domain with increased void and thereby increased void reactivity feedback and which often have thinner fuel rods and thereby decreased response times, has resulted in a decrease of the stability margin in the low-flow, high-power region of the operating map. This trend has resulted in a number of “unexpected” instability events. For instance, United States plants have experienced two instability events recently, one of them resulted in an automatic reactor scram; in Spain, two BWR plants have experienced unstable limit cycle oscillations that required operator action to suppress. Similar events have been experienced in other European countries. In recent years, the subject of BWR instabilities has been one of the more exciting topics of work in the area of transient thermohydraulics. As a result, significant advances in understanding the physics behind these events have occurred, and a “new and improved” state of the art has emerged recently.  相似文献   

20.
The possibility of an in-pile experimental reactor for fast breeder reactors using a fast driver core is investigated. The driver core is composed of a particle bed with diluted fuel. The results of various basic analyses show that this reactor could perform as follows: (1) power peaking at the outer boundary of test core does not take place for large test core; (2) the radial power distribution in test fuel pin is expected to be the same as a real reactor; (3) the experiments with short half width pulse is possible; (4) for the ordinary MOX core, enough heating-up is possible for core damage experiments; (5) the positive reactivity effects after power burst can be seen directly. These are difficult for conventional thermal in-pile experimental reactors in large power excursion experiments. They are very attractive advantages in the in-pile experiments for fast breeder reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号