首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
In this study, the electrically conducting polyaniline-titanium(IV)phosphate (PANI-TiP) cation exchange nanocomposite was synthesized by sol-gel method. The cation exchange nanocomposite based sensor for detection of ammonia vapors was developed at room temperature. It was revealed that the sensor showed good reversible response towards ammonia vapors ranging from 3 to 6%. It was found that the sensor with p-toluene sulphonic acid (p-TSA) doped exhibited higher sensing response than hydrochloric acid doped. This sensor has detection limit ≤1% ammonia. The response of resistivity changes of the cation exchange nanocomposite on exposure to different concentrations of ammonia vapors shows its utility as a sensing material. These studies suggest that the cation exchange nanocomposite could be a good material for ammonia sensor at room temperature.  相似文献   

2.
Inkjet-Printed Polymer Films for the Detection of Organic Vapors   总被引:1,自引:0,他引:1  
Inkjet printing has been used to prepare polymeric thin films for gas sensing. The conductive polymer poly(3,4-ethylene dioxythiophene) doped with polystyrene sulfonated acid (PEDOT-PSS) was used as the organic ink. The electrical resistance of the printed films was monitored during exposure to atmospheres containing alcohol vapors. Thin films (one to two printed layers) exhibited a sharp, nonreversible increase in film resistance (a "chemical fuse") which was attributed to a change in morphology of the PEDOT-PSS layer. The response time of the thin films was 6-10 min, depending on the film thickness. A longer response time was observed for three inkjet-printed layers. In contrast, thick films (> four printed layers) showed a reversible response (except for the initial exposure) to the same vapor. This was thought to originate from a screening effect between the positively charged PEDOT and negatively charged PSS dopant. The response times of the thick films were 8 and 6 min for methanol and ethanol, respectively. For both types of response, the inkjet-printed layers were found be more sensitive to methanol (0.05% ppm-1) than to ethanol (0.03% ppm-1)  相似文献   

3.
The nanostructured pure and Sn doped ZnO have been synthesized by the thermal evaporation technique. The influence of Sn on the morphology and structure is investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) analysis techniques. The SEM images indicate change in the growth pattern from nanowires of pure ZnO to tetrapods for Sn doped ZnO. Pure ZnO nanowires exhibit selective response towards acetone vapors while on Sn doping the response decreases. The non-stiochiometry and the morphology of ZnO are probably responsible for such a difference in gas response. However increase in temperature doesn't improve the sensing behavior. The photoluminiscence (PL) studies reveal UV emission in pure ZnO which shifts to green emission on doping of Sn.  相似文献   

4.
Zinc oxide (ZnO) thin films are prepared using sol–gel method for acetone vapor sensing. Zinc acetate dihydrate (Zn(CH3COO)2·2H2O) was taken as starting material and a stable and homogeneous solution was prepared in ethanol by deliquescing the zinc acetate and distinct amount of monoethanolamine as a stabilizing agent. The prepared solution was then coated on silicon substrates by spin coating method and then annealed at 650 °C for preparing ZnO thin films. The thickness of the film was maintained at 410 nm. The structural, morphological and optical studies were done for the synthesized ZnO thin films. The operating temperature and sensor response is considered to be an important parameter for the gas sensing behavior of any material. Therefore, the present study examined the effect of sensing behavior of 3% v/v gold (Au) doped ZnO thin films as a sensor. The response characteristics of 410 nm ZnO thin film for temperature ranging from 180 to 360 °C were determined for the acetone vapors. The reported study provides a significant development towards acetone sensors, where a very high sensitivity with rapid response and recovery times are reported with lowered optimal operating temperature as compared to bare ZnO nano-chains like structured thin films. In comparison to the bare ZnO thin films giving a response of 63 at an operating temperature of 320 °C, a much better response of 132.3 was observed for the Au doped ZnO thin films at an optimised operating temperature of 280 °C for a concentration of 500 ppm of acetone vapors.  相似文献   

5.
Spider silk is being viewed with interest by materials scientists due to its excellent resilience and mechanical properties. In this paper we show that spider silk is an excellent scaffold for the one-step synthesis and assembly of gold nanoparticles. Formation of a gold nanoparticle-spider-silk bioconjugate material is accomplished by simple reaction of the fibers with aqueous chloroauric acid. The gold nanoparticles thus formed are strongly bound to the spider-silk fiber surface enabling study of the electrical properties of the nanobioconjugate. Using the well-known contraction/expansion behavior of the fibers in solvents of varying polarity, we show that exposure of the gold nanoparticle-spider silk bioconjugate to vapors of methanol and chloroform leads to changes in electrical transport through the nanoparticles and thus, the possibility of developing a vapor sensor. The bioconjugate shows excellent response time and cycling efficiency to methanol vapors. The activation energy of electron transport from one gold nanoparticle to another in the nanobiocojugate was determined from temperature-dependent electron-transport measurements to be approximately 1.7 eV.  相似文献   

6.
In the current study, nano-hydroxyapatite/β-tricalcium phosphate (HA/β-TCP) ceramics scaffolds loaded with cationic liposomal ceftazidime (CLCs) prepared by modified reverse phase evaporation method, the investigations of their release characteristics were performed by the dissolution tests, in vitro anti-biofilm activity of the scaffolds was studied by the determination of bacterial susceptibility with ELISA. The mean particle size, zeta potential, pH and entrapment efficiency of the CLCs studied were 161.5?±?5.37?nm, 60.60?±?5.24 mV, 6.90?±?0.07 and 16.57?±?0.13%, respectively. Electron microscopic images of the samples indicated that the liposomes were well preserved in the scaffolds and that it was the CLCs rather than free ceftazidime releasing from the scaffolds. The minimal inhibitory concentrations (MICs) to Staphylococcus aureus of free ceftazidime and its liposomal formulation were 6.00 μg/mL and the release behaviors of both CLCs and free ceftazidime from scaffolds were based on the dissolution/diffusion processes, Fick's law. These results demonstrated that CLCs could inhibit remarkably the formation of S. aureus biofilm more effectively than free ceftazidime (P?相似文献   

7.
In this paper, we report on the preparation of novel cross-reactive optical microsensors for high-speed detection of low-level explosives and explosives-like vapors. Porous silica microspheres with an incorporated environmentally sensitive fluorescent dye are employed in high-density sensor arrays to monitor fluorescence changes during nitroaromatic compound (NAC) vapor exposure. The porous silica-based sensor materials have good adsorption characteristics, high surface areas, and surface functionality to help maximize analyte-dye interactions. These interactions occur immediately upon vapor exposure, i.e., in less than 200 ms and are monitored with a high-speed charge-coupled device camera to produce characteristic and reproducible vapor response profiles for individual sensors within an array. Employing thousands of identical microsensors permits sensor responses to be combined, which significantly reduces sensor noise and enhances detection limits. Normalized response profiles for 1,3-dinitrobenzene (1,3-DNB) are independent of analyte concentration, analyte exposure time, or sensor age for an array of one sensor type. Explosives-like NACs such as 2,4-dinitrotoluene and DNB are detected at low part-per-billion levels in seconds. Sensor-analyte profiles of some sensor types are more sensitive to low-level NAC vapor even when in a higher organic vapor background. We show that single-element arrays permit the detection of low-level nitroaromatic compound vapors because of sensor-to-sensor reproducibility and signal averaging.  相似文献   

8.
《IEEE sensors journal》2006,6(4):854-860
A simple design involving a birefringent porous glass oriented between two crossed polarizers serves as the foundation for an optically based sensitive broad-spectrum chemical sensor. Volatile organic compounds (VOCs) such as acetonitrile vapors can be readily detected at concentrations of as low as 50 ppm. Changes are observed in polarized light transmitted by the anisotropic porous material constituting the sensor, upon exposure to VOC-bearing air, as intensity changes at a defined wavelength or as changes in spectral content (color) detectable by the eye. The optical effects resulting from exposure to various vapors are reversible and may result from adsorption of solvent vapors with attendant reduction of anisotropy. The microporous structure as well as the surface chemistry of the sensor may be controlled for tuning the response to VOCs for industrial applications. Miniaturization of the sensor using low-cost materials such as plastic or glass optical fibers, Polaroid films, and birefringent porous glass is demonstrated. The sensor described in this paper could use ambient light as source and the eye as detector (color change) or electronically controlled light emission and detection for better sensitivity and real time monitoring of VOCs. Such intrinsic explosion proof sensors could be used to safely monitor VOC levels in remote environments.  相似文献   

9.
Transparent conductive thin films of single-walled carbon nanotubes (SWNTs) and their nanocomposites with an organic conductive polymer, poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) with different CNT loadings ranging from 20 to 90 wt% were prepared and doped by exposing them to thionyl chloride (SOCl2) vapors. After exposure to SOCl2 vapor for 1 h, the SWNT film showed about 15-18% increase of electrical conductivity, while on the other hand pristine polymer film showed a decrease of electrical conductivity. The SWNT-polymer composite films showed a drastic increase in conductivity by doping with SOCl2 vapor, most interestingly, the doping effect was much higher for composite films with less CNT weight fraction and it was linearly decreased with increasing CNT loading. For instance, composite film with 10% and 90% CNT loading demonstrated about 65% and 10% increase of electrical conductivity, respectively. The interaction of SOCl2 vapors on SWNTs and composite films is investigated by UV-visible absorption and Raman spectroscopy.  相似文献   

10.
Cholesteric liquid crystals (CLCs), also known as chiral nematic LCs, show a photonic stopband, which is promising for various optical applications. In particular, CLCs confined in microcompartments are useful for sensing, lasing, and optical barcoding at the microscale. The integration of distinct CLCs into single microstructures can provide advanced functionality. In this work, CLC multishells with multiple stopbands are created by liquid–liquid phase separation (LLPS) in a simple yet highly controlled manner. A homogeneous ternary mixture of LC, hydrophilic liquid, and co-solvent is microfluidically emulsified to form uniform oil-in-water drops, which undergo LLPS to form onion-like drops composed of alternating CLC-rich and CLC-depleted layers. The multiplicity is controlled from one to five by adjusting the initial composition of the ternary mixture, which dictates the number of consecutive steps of LLPS. Interestingly, the concentration of the chiral dopant becomes reduced from the outermost to the innermost CLC drop due to uneven partitioning during LLPS, which results in multiple stopbands. Therefore, the photonic multishells show multiple structural colors. In addition, dye-doped multishells provide band-edge lasing at two different wavelengths. This new class of photonic multishells will provide new opportunities for advanced optical applications.  相似文献   

11.
The sorption of methanol and ethanol vapors by a microporous glassy polycarbonate is studied. The increase of the refractive index of the polymer during analyte sorption is measured by surface plasmon resonance. Both analytes are sorbed into the micropores of the polymer showing different diffusion kinetics. The sensor response during analyte exposure is subdivided into different time channels. By evaluating this additional data dimension by neural networks, a simultaneous multicomponent analysis of binary mixtures of ethanol and methanol vapors is possible using the sensor response of only one single sensor. A feature extraction results in an interpretable model and an improved prediction with errors of 2.0% for methanol and 2.4% for ethanol.  相似文献   

12.
A graphene(G)/Silicon(Si) heterojunction Schottky diode and a simple method that evaluates its electrical response to different chemical vapors using electrochemical impedance spectroscopy (EIS) are implemented. To study the impedance response of the device of a given vapor, relative impedance change (RIC) as a function of the frequency is evaluated. The minimum value of RIC for different vapors corresponds to different frequency values (18.7, 12.9 and 10.7 KHz for chloroform, phenol, and methanol vapors respectively). The impedance responses to phenol, beside other gases used as model analytes for different vapor concentrations are studied. The equivalent circuit of the device is obtained and simplified, using data fitting from the extracted values of resistances and capacitances. The resistance corresponding to interphase G/Si is used as a parameter to compare the performance of this device upon different phenol concentrations and a high reproducibility with a 4.4% relative standard deviation is obtained. The efficiency of the device fabrication, its selectivity, reproducibility and easy measurement mode using EIS makes the developed system an interesting alternative for gases detection for environmental monitoring and other industrial applications.  相似文献   

13.
为了对空气中含毒性的有机气体进行检测,以1-丁基-3-甲基咪唑氯盐离子([BMIm]Cl)液体溶解棉纤维素和壳聚糖得到均相混合溶液,以十二烷基磺酸钠(SDS)改性的多壁碳纳米管(MWCNTs)为导电填料,通过溶液涂覆方法,制备了MWCNTs/天然纤维素-壳聚糖气敏导电复合材料。结果表明:当壳聚糖与棉纤维素的质量比为1:7,MWCNTs含量在逾渗值(2.8wt%)附近时,该复合材料对甲醇、乙醇、氯仿和丙酮等极性有机溶剂蒸气显示出较好的气敏性和重复使用稳定性,其气敏响应行为表现为典型的负蒸气系数(NVC)效应。  相似文献   

14.
A method for fast air purification using high concentration aerosol of TiO2 nanoparticles is evaluated in a model chemical catastrophe involving toxic vapors of diisopropyl fluorophosphate (DFP). Mice are used as human model in a closed 100 dm3 chamber. Exposure of mice to 37 ppm of DFP vapor for 15 min resulted in acute poisoning. Spraying TiO2 aerosol in 2 min after the start of exposure to DFP vapors resulted in quick removal of DFP vapors from the chamber's air. Animals did not show signs of poisoning after the decontamination experiment and exposure to TiO2 aerosol alone. Reactive oxygen species (ROS) and antioxidant activity (AOA) of mice blood plasma were measured for animals exposed to sound of aerosol generator, DFP vapors, TiO2 aerosol and DFP vapors + TiO2 aerosol. Reduced ROS and increased AOA were found for mice exposure to sound, DFP and TiO2 aerosol. Exposure to DFP and decontamination with TiO2 nanoparticles resulted in decreased AOA in 48 h following the exposure. The results suggest that application of TiO2 aerosol is a powerful method of air purification from toxic hydrolysable compounds with moderate health aftermaths and requires further study and optimization.  相似文献   

15.
16.
Wei L  Shi D  Ye P  Dai Z  Chen H  Chen C  Wang J  Zhang L  Xu D  Wang Z  Zhang Y 《Nanotechnology》2011,22(42):425501
We developed a chemiresistive sensor based on doped and functionalized semiconducting single-walled carbon nanotube (SWNT) networks for ultrasensitive and rapid detection of dimethyl methylphosphonate (DMMP) (simulant of nerve agent sarin) vapor. The semiconducting SWNT network was deposited between interdigitated electrodes and modified by solid organic acid tetrafluorohydroquinone (TFQ). The TFQ molecules could not only selectively bind DMMP onto the sidewalls of SWNTs via the strong hydrogen bonding interaction, but also tailor the electronic properties of SWNTs via heavy hole doping. This synergetic effect significantly improved the sensitivity of the devices, and enabled the sensors to easily detect DMMP at 20 parts-per-trillion (ppt) concentration with a response time of less than 2 min, without the need for pre-concentration of the analytes. This sensitivity is about five orders of magnitude higher than that of the unmodified SWNT chemiresistor, and also significantly higher than that of the functionalized SWNT chemiresistors previously reported. Moreover, the SWNT-TFQ sensors could be recovered when DMMP is replaced with referencing gas. The SWNT-TFQ sensors also show excellent selectivity toward DMMP over some interfering organic vapors. The response mechanism, i.e. charge transfer and dedoping was investigated.  相似文献   

17.
A study of Langmuir-Blodgett thin film for organic vapor detection   总被引:1,自引:0,他引:1  
In this work, arachidic acid was deposited onto a quartz crystal using a standard Langmuir-Blodgett (LB) thin film deposition procedure. Quartz Crystal Microbalance (QCM) technique was used to monitor the reproducibility of the LB film monolayer and was employed to study the organic vapor sensing properties of chloroform, toluene, benzene, ethyl alcohol and isopropyl alcohol. QCM results show that arachidic acid monolayer was successfully organised and deposited from the water surface onto a quartz crystal substrate. This LB film is found to be highly sensitive and selective to chloroform vapor than other vapors. The response of the sample against chloroform is fast, large and reversible.  相似文献   

18.
Rifampicin-chitosan matrices were prepared by a chemical cross-linking method to develop a sustained-release form. The effects of cross-linking agent (formaldehyde) on the drug release rate and release kinetics were investigated in this study. Moreover, the kinetics of rifampicin released from chitosan matrices exposed to formaldehyde vapors for predetermined time intervals were analyzed using Ritger and Peppas exponential equation. The in vitro release kinetics exhibited a non-Fickian transport model. Increasing the exposure time to formaldehyde vapors decreased the release rate of rifampicin from chitosan matrices as a result of formation of greater structural strength and tighter texture.  相似文献   

19.
This paper describes the development of a portable, automated flow injection-chemiluminescence (FI-CL) analyzer incorporating on-line solid-phase extraction (SPE) for the determination of dodecylamine (detergent) in diesel fuels. The method is based on the peroxyoxalate/sulforhodamine 101 chemiluminescence reaction, with SPE required to remove indigenous compounds within the diesel fuel matrix that interfere with the CL response. The automated analyzer achieved a detection limit of 2.9 mg L(-1) and a linear range of 2.9-50 mg L(-1), which was suitable for determinations of dodecylamine at levels typically present in fully formulated diesel fuels (40 mg L(-1)). Analyses of base fuels from five different sources demonstrated that an automated FI-CL-SPE system could provide a portable instrument for monitoring the presence/absence of dodecylamine in diesel fuels.  相似文献   

20.
Vapor detectors formed from composites of conductors and insulating organic polymers have been tailored to produce increased sensitivity toward specific classes of analyte vapors. Upon exposure to acetic acid at 1% of its vapor pressure, detectors consisting of linear poly(ethylenimine) (1-PEI)-carbon black composites showed an approximately 10(3) increase in signal/noise relative to the performance of typical insulating organic polymer-carbon black composite vapor detectors. Compositional diversity in an array of such vapor detectors was obtained by varying the degree of plasticization of the 1-PEI films. The resulting vapor detector array produced sensitive detection of, and robust discrimination between, various volatile organic acids and relatively little response from nonacidic organic vapors or from water vapor. Measurements of the mass uptake, thickness change, and electrical conductivity of such composites indicate that swelling of the polymer film, and thus its normalized resistance response, is beyond that expected by mass uptake alone upon exposure to acetic acid vapor. This additional thickness increase is attributed to charge-induced polymer swelling occurring from polymer-analyte interactions. Electrical percolation also plays a significant role in producing the large increase in normalized resistance response of these composites upon exposure to acetic acid vapor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号