首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 125 毫秒
1.
三维编织复合材料现有的成型方法将导致编织物单胞模型发生变化,据此提出了一种改进的具有矩形截面的单元内胞模型,假设编织纱线具有平行六边形横截面,分析了不同区域胞体内部纤维束的空间构型,建立了三维四向编织复合材料内部单胞三维实体模型。通过分析编织物内纱线间的空间接触关系,采取合理的假设,推导了编织工艺参数和模型结构参数的关系,并计算了三维四向编织复合材料的纤维体积含量,为该种材料后续力学性能分析奠定了基础。该模型适用于部分不规则成型工艺,并有可能应用于其他形式的编织工艺研究。  相似文献   

2.
吴涛  曹海建  钱坤  罗冰融  俞科静  汤继忠 《材料导报》2012,(Z1):410-413,420
以玻璃纤维为原料,采用全自动模块组合旋转法三维编织平台制备三维四向T型、三维五向T型、三维全五向T型及相同体积分数的三维全五向方形编织预制件,并将其分别与环氧树脂基体复合,制备三维编织复合材料。借助Instron万能材料试验机测试上述4种材料的弯曲性能,探讨材料发生弯曲破坏的机理。结果表明,三维全五向T型编织复合材料的抗弯性能最好,三维四向T型编织复合材料的抗弯性能最差;三维全五向T型编织复合材料比相同体积分数的三维全五向方形编织预制件抗弯能力强。  相似文献   

3.
张帆  许健  顾春辉 《材料导报》2018,32(Z1):350-353
三维编织复合材料是一种先进复合材料,在航空航天等尖端领域的应用越来越广泛。本文分析了传统三维编织复合材料的优势、用途及存在的缺陷和不足,并提出了改进该材料性能的可能途径,即发展一种新的三维全五向编织复合材料。针对三维全五向编织复合材料这种新型的编织形式,提出了几种可能的工艺实现途径,指出用四步法编织是对材料性能影响最小,最可能实现工业化生产的途径。最后,以三维全五向编织法兰为例,对其在制备过程中的材料选择、模具设计及固化工艺进行了详细的讨论。  相似文献   

4.
三维六向编织复合材料弹性性能理论预测   总被引:4,自引:0,他引:4       下载免费PDF全文
在三维六向编织物纱线运动规律的基础上, 建立了单胞模型, 推导了编织参数之间的数学关系。基于该模型, 采用改进的刚度平均化方法, 导出了三维六向编织复合材料的工程弹性常数, 分析了编织角和纤维体积含量对弹性性能的影响。结果表明, 三维六向编织复合材料具有良好的力学性能, 由于面内纬纱的加入, 使面内的力学性能得到了提高。   相似文献   

5.
三维五向编织复合材料纵向性能的实验研究   总被引:9,自引:2,他引:9  
通过对具有不同编织结构参数的三维五向编织复合材料试件的纵向拉伸和压缩实验,分析了该类材料的纵向拉、压刚度和强度随编织工艺参数的变化规律以及材料的失效形式.三维五向编织复合材料在破坏前基本保持线弹性,纵向拉、压破坏具有脆性特征,拉伸模量和压缩模量比较接近,但拉伸强度远大于压缩强度.编织角和纤维体积含量对材料性能的影响显著,纱线粗细的影响不大.提高第五向纱线的比例,可提高材料的纵向性能.此外,研究中采用短标距薄板试件,以避免试件产生整体屈曲和端部纤维束开裂破坏.  相似文献   

6.
在三维全五向(Q5D)编织复合材料细观结构模型的基础上, 建立了其单胞参数化有限元模型。通过施加合理的边界条件, 计算得到了Q5D编织复合材料的弹性常数、 热传导系数和热膨胀系数, 所得结果与现有的实验数据吻合较好。在此基础上, 深入研究了纤维体积分数、 编织角等工艺参数对材料弹性性能和热物理性能的影响规律, 并将计算结果与三维四向(4D)和三维五向(5D)编织复合材料的相应结果进行了对比。结果表明, Q5D编织复合材料具有较好的力学性能和纵向导热性能, 其零膨胀结构的可设计性更强, 为进一步研究此种结构材料的强度问题和热力耦合问题奠定了基础。  相似文献   

7.
三维七向编织结构细观分析   总被引:4,自引:0,他引:4       下载免费PDF全文
根据三维编织的主要工艺, 系统地分析了三维七向编织物纱线的面内和空间运动规律。在此基础上,建立了能反映其基本结构的几何单胞模型, 并推导了编织参数之间的数学关系, 为进一步分析三维七向编织复合材料的力学性能奠定了基础。   相似文献   

8.
基于三维四向和五向编织复合材料的细观结构和单胞模型, 对三维四步法矩形截面编织复合材料悬臂梁的振动阻尼性能进行了理论分析, 研究了编织角、 纤维体积分数等工艺参数对材料振动阻尼特性的影响, 并与实验结果进行了对比。对三细胞模型进行了改进, 采用混合律得到了材料的总体刚度, 进而得到一阶固有频率。此外, 还分别计算了一个周期内不同走向纱线和基体振动消耗的能量, 以及总振动能量, 得到了材料的损耗因子。结果表明, 对于三维四向和五向编织复合材料, 一阶固有频率随编织角的增加而减小, 随纤维体积分数的增加而增大; 而损耗因子随编织角的增加而增大, 随纤维体积分数的增加而减小, 并表现出明显的非线性变化规律。   相似文献   

9.
在三维全五向(Q5D)编织复合材料细观结构模型的基础上,建立了其单胞参数化有限元模型.通过施加合理的边界条件,计算得到了Q5D编织复合材料的弹性常数、热传导系数和热膨胀系数,所得结果与现有的实验数据吻合较好.在此基础上,深入研究了纤维体积分数、编织角等工艺参数对材料弹性性能和热物理性能的影响规律,并将计算结果与三维四向(4D)和三维五向(5D)编织复合材料的相应结果进行了对比.结果表明,Q5D编织复合材料具有较好的力学性能和纵向导热性能,其零膨胀结构的可设计性更强,为进一步研究此种结构材料的强度问题和热力耦合问题奠定了基础.  相似文献   

10.
基于实验观察和理论研究, 重点分析了材料内部区域纤维束的空间构型, 建立了一个新的三维实体细观结构模型, 并指出了编织工艺参数和模型细观结构参数之间的关系。该模型较真实地反映了纤维束之间的相互挤压变形方式, 纤维束横截面积沿纤维束轴向不断变化, 更符合三维四向编织复合材料的实际结构。基于刚度体积平均及柔度体积平均混合思想, 建立了相应的刚度预报模型。用该模型计算编织复合材料几何特性及工程弹性常数的数值结果与试件实测数据吻合, 表明了该模型的合理有效性, 为进一步研究三维编织复合材料的拉伸强度及破坏机制提供了基础。  相似文献   

11.
This paper presents an analytical method for designing the configuration of composite joint with three-dimensional (3D) five-directional braided composites. Based on the analysis of 3D braided structure characteristics, the elastic properties of the 3D five-directional braided composites were determined by the volume averaging method. The effects of the braiding angle and fiber volume fraction on the elastic constants of the braided composites were also discussed. Finite element analysis on the load capacity of the 3D five-directional braided composite joint was implemented using the software ANSYS Workbench 14.0. The influence of braiding angle on the stress, strain and deformation of the composite joint under tensile loading were calculated. The results show that when the fiber volume fraction of the 3D five-directional braided preform is given, the equivalent stress of the composite joint decreases monotonically as the braiding angle increases, while the normal stress, maximum principal stress and total deformation firstly decreases and then increases. Based on the finite element analysis, we found that at the fiber volume fraction of 60%, the braiding angle within the range of 30–35° are the optimum processing parameters for the 3D five-directional braided composite joint structure that used in the tensile load 320 N condition.  相似文献   

12.
The meso-structure is important in predicting mechanical properties of the three-dimensional (3D) braided composite. In this paper, the internal structure and porosity of three-dimensional full five-directional (3DF5D) braided composite is characterized at mesoscopic scale (the scale of the yarns) using micro-computed tomography (micro-CT) non-destructively. Glass fiber yarns as tracer are added into the sample made of carbon fiber to enhance the contrast in the sectional images. The model of tracer yarns is established with 3D reconstruction method to analyze the cross-section and path of yarns. The porosities are reconstructed and characterized in the end. The results demonstrate that the cross sections of braiding yarns and axial yarns change with the regions and the heights in one pitch of 3DF5D braided composites. The path of braiding yarns are various in the different regions while the axial yarns are always straight. Helical indentations appear on the surfaces of the axial yarns because of the squeeze from braiding yarns. Moreover, the porosities in different shapes and sizes are almost located in the matrix and between the yarns.  相似文献   

13.
三维五向编织复合材料的力学性能分析Ⅰ:细观结构模型   总被引:4,自引:1,他引:3  
通过观察CCD显微摄像仪获取的三维五向编织复合材料的截面图像,分析了纱线的排列规律及其截面形状的变化,建立了三维实体单胞模型,该模型合理地反映了纱线的交织状态和截面形状。基于该模型建立了编织工艺参数之间的几何关系。将预制件的外型尺寸和体积含量的计算值与实测值进行比较,吻合较好,为材料进一步的有限元分析奠定了基础。  相似文献   

14.
二步法方型三维编织复合材料的细观结构   总被引:12,自引:5,他引:7       下载免费PDF全文
对二步法方型三维编织复合材料的三维五向结构进行了真实的描述与分析。在此基础上划分出边上、角上和内部单元体。通过对复合材料的横截面以及与试件表面成45°的纵切面进行观察,确定出轴纱因受编织纱捆绑挤压产生的形变情况以及轴纱内纤维体积含量。  相似文献   

15.
三维方型编织预制件的纱线编织结构   总被引:21,自引:6,他引:15       下载免费PDF全文
主要研究了四步法1×1 编织预制件的纱线编织结构。采用控制体积单元法和实验观察相结合的方法, 根据携纱器的编织运动规律, 将预制件分为三个区域, 识别了局部单胞模型。在椭圆形横截面假设的基础上, 考虑了编织纱线的填充因子, 建立了编织工艺参数之间的关系。   相似文献   

16.
三维四步方形编织结构的几何建模   总被引:1,自引:0,他引:1  
研究三维复合材料的编织结构是分析这种材料力学性能的前提。从三维编织工艺和实际的编织过程出发,针对方形编织结构提出了一种单元几何模型。该模型以携纱器循环一周返回到起始位置所形成的纱线编织结构作为单元,保证了纤维束的连续性和材料整体结构的完整性。对每根纱线,选取它在编织体各个区域内合适的控制点,过这些控制点拟合成三次样条曲线,以此模拟纱线的空间结构中心线。最后得到纱线和编织体的结构。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号