首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J.L. Cui  H.F. Xue  W.J. Xiu 《Materials Letters》2006,60(29-30):3669-3672
The p-type pseudo-binary AgxBi0.5Sb1.5−xTe3 (x = 0.05–0.4) alloys were prepared by cold pressing. The thermal conductivities (κ) were calculated from the values of heat capacities, densities and thermal diffusivities measured, and range approximately from 0.66 to 0.56 (W K− 1 m− 1) for the AgxBi0.5Sb1.5−xTe3 alloy with molar fraction x being 0.4. Combining with the electrical properties obtained in the previous study, the maximum dimensionless figure of merit ZT of 1.1 was obtained at the temperature of 558 K.  相似文献   

2.
A large family of Sn2yPb2(1−y)P2S6xSe6(1−x) semiconductor-ferroelectric crystals were obtained by the Bridgman technique. The photoluminescence properties of the Sn2yPb2(1−y)P2S6xSe6(1−x) family crystals strongly depend on their chemical composition, excitation energy and temperature. The influence of the Pb → Sn and S → Se isovalent substitutions on the luminescence properties of a crystal with the Sn2P2Se6 basic composition was investigated. A broad emission band observed in the Sn2P2Se6 crystal with a maximum roughly at 600 nm (at T = 8.6 K) was assigned to a band-to-band electron-hole recombination, whereas broad emission bands, peaked near 785 nm (at T = 8.6 K) and 1025 nm (at T = 44 K) were assigned to an electron-hole recombination from defect levels localised within the bandgap. Possible types of recombination defect centres and specific mechanisms of luminescence in the Sn2P2Se6 semiconductor-ferroelectric crystals were considered and discussed on the basis of the obtained results and the referenced data.  相似文献   

3.
Nanocrystalline Nd2(Zr1 − xSnx)2O7 series solid solutions were prepared by a convenient salt-assisted combustion process using glycine as fuel. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and high-resolution transmission electron microscopy. The results showed the Zr ion can be partially replaced by Sn ion. The partial substituted products were still single-phase solid solutions and the crystal form remained unchanged. TEM images reveal that the products are composed of well-dispersed square-shaped nanocrystals. The method provides a convenient and low-cost route for the synthesis of nanostructures of oxide materials.  相似文献   

4.
The physicochemical properties of V-doped indium titanates (In2Ti1−xVxO5+δ, 0.0 ≤ x ≤ 0.2) were investigated by using XPS, powder XRD, UV–vis, SEM and luminescence spectroscopy techniques. The Rietveld refinement of XRD data revealed that even though the V-containing samples were isostructural with In2TiO5 (orthorhombic space group Pnma), a systematic x-dependent variation was noticeable in the Ti–O bond lengths in [TiO6] octahedral units, cell parameters and in the value of δ. XPS results confirmed the coexistence of V5+ and V4+ states, leading thereby to an enhancement in oxygen non-stoichiometry in the doped samples. A loading-dependent progressive shift from 400 to 750 nm was also observed in the onset of the absorption edge, indicating a significant narrowing of the band gap. Furthermore, the samples with higher V-content were comprised of the grain clusters having larger size and an irregular shape. The UV–vis, photoluminescence and thermoluminescence studies indicate that the doping-induced lattice defects may give rise to certain closely spaced acceptor/donor energy levels in between the band gap of host matrix. The indium titanates are found to serve as stable photocatalysts for water splitting under visible light, where oxygen was the major reaction product. The role of microstructural and morphological properties in the photocatalytic activity is discussed.  相似文献   

5.
At present, the development of superconducting YBa2Cu3O7−x coated conductors attracts much attention due to their enormous application potential in electric power systems. Worldwide research is focused on the investigation and improvement of buffer materials and YBa2Cu3O7−x superconducting properties as well as low-cost manufacturing processes in cooperation with industrial companies. Accordingly, chemical solution deposition has emerged as a highly competitive, versatile, and cost-effective technique for fabricating coated conductors of high performance. New chemical solution approaches are under development for buffer layer deposition. In order to achieve high critical current carrying YBa2Cu3O7−x layers, the established trifluoroacetate route is favored. This paper reviews the most recent work on chemical solution deposition within the IFW Dresden while also considering achievements on this specific research topic worldwide.  相似文献   

6.
We have fabricated and measured a high-capacity superconducting current lead composed of a Y1Ba2Cu3O7–x cylinder, 20 cm long and 0.9 cm2 cross section. A steady-state, d.c., critical current of 225 A at a temperature of 77 K was measured in this sample, using a voltage criterion of 2×10–7 V/cm (p = 8×10–10 ohm-cm). This current was limited by the currentinduced, self magnetic field. To our knowledge this is the largest d.c. critical current so far reported in a Y1Ba2Cu3O7–x sample and demonstrates the possibility of using hightemperature superconducting HTS materials for current leads to low-temperature superconducting LTS magnets or in power distribution systems.  相似文献   

7.
The structural and superconducting properties of YBa2(CU1–x Ti x )3Oz samples are investigated using X-ray diffraction, ac susceptibility, and oxygen content measurements. The effect of increasing Ti concentration in YBa2(Cu1–x Ti x )3Oz lowers the oxygen content and decreasesT c, which is attributed to hole filling by Ti.  相似文献   

8.
0.33–33% of the Cu in superconducting YBa2Cu3O y has been replaced by Li (i.e.,x=0.01–1 in single-phase or nominal YBa2Cu3–x LixOy). X-ray diffraction powder patterns remain the same as for YBn2Cu3O y , with identical patterns up to about 17% substitution (i.e.,x=0.5). At higher percentages an additional phase appears. Electrical conductivity measurements indicate a small elevation ofT c at low Li content. Starting at about 5% Li (x=0.15),T c declines progressively and its width increases asx is raised.  相似文献   

9.
Polarization-dependent X-ray-absorption fine-structure (XAFS) measurements on the local structure of the La2CuO4-based high-T c superconductors La2–x Sr x CuO4, La2–x Ba x CuO4, and La1.6–x Sr x Nd0.4CuO4 find, among others, orientation disorder induced in the Cu–O2 planes by doping Sr, Ba, and alloying Nd atoms, all such atoms residing in La-sites. The orientation disorder is of two types: mostly static-buckling disorder, and dynamic disordering of the tilt angles of the Cu–O6 octahedra correlated in nanoscale regions, with respect to neighboring nanoscale regions. Buckling disorder in the Cu–O2 planes has the greatest detrimental effect on T c and conductivity for such foreign atoms.  相似文献   

10.
The crystal and electronic structures, as well as the luminescence properties of Sr2Al2−xSi1+xO7−xNx:Eu2+ are reported. First-principles calculations energetically confirm that the Al and Si atoms are in partial ordering in the 2a and 4e sites in Sr2Al2SiO7. In addition, the band structure calculation shows that Sr2Al2SiO7 has an indirect band gap with an energy gap of about 4.07 eV, which is in good agreement with the experimental data (5.3 eV) obtained from the diffuse reflection spectrum. The crystal structure of Sr2Al2SiO7 can be modified by Si–N substitution for Al–O in the lattice with a maximum solubility of about x=0.6. The average bond length of EuSr-(O,N) slightly increases although the lattice parameters decrease with the incorporation of Si–N in Sr2Al2SiO7:Eu2+. Under excitation in the visible spectral region, Sr2Al2−xSi1+xO7−xNx:Eu2+ emits blue to yellow light with a broad emission band in the range of 480–570 nm, varying with both the Eu concentration and the x value. The red shift of the emission band of Eu2+ is associated with an increase in the crystal-field splitting and the covalency, which arise from the incorporation of nitrogen as well as the energy transfer between the Eu ions at high Eu concentrations. Moreover, the Eu ions have a strong effect on both the concentration quenching and the thermal quenching in Sr2Al2−xSi1+xO7−xNx. The temperature dependence of photoluminescence indicates that Sr2Al2−xSi1+xO7−xNx:Eu2+ shows strong thermal quenching due to the dominant nonradiative process at room temperature.  相似文献   

11.
    
A definite correlation between the thermal and electronic properties of Y1Ba2Cu x O y perovskite materials has been observed using differential thermal analysis (DTA) and X-ray fluorescence spectroscopy (XFS). The compound Y1Ba2Cu3O7–z shows anomalous transition enthalpy and copper-oxygen hybridization with respect to other compounds with different copper content.  相似文献   

12.
Phase change materials based on addition of ceramic material (ZnS–SiO2) into antimony–indium–tin (Sb100−xySnxIny) have been considered as possible candidates for high density optical data recording. Chemical compositions of the alloys have been optimized in order to develop a new high density Blu-ray Recordable Low to High optical data format. The evaluation of electrical parameters of resultant product shows that the jitter depends on the percentage of ZnS–SiO2 and the chemical composition of the parent Sb100−xySnxIny phase change material.  相似文献   

13.
CaCu3Fe2Sb2O12 is mechanically stable, thermodynamically stable at pressures above 18 GPa. Both GGA and GGA + U methods predict that it is a ferrimagnetic semiconductor with Fe3+ in high spin state (S = 5/2). The coupling of Fe–Cu is antiferromagnetic, while that of Cu–Cu is ferromagnetic. The calculated total spin moment is 6.17 μB.  相似文献   

14.
In La2–x Ba x CuO4 (LBCO) the transition to a low-temperature tetragonal phase and the suppression of superconductivity occur at the carrier concentration p 1/8 per copper. We will discuss the roles of various material parameters that control this instability. An unusual lattice softening has been found by ultrasonic measurement on La2–x Sr x CuO4 (LSCO). This softening is present only in an in-plane shearing mode and is ascribed to the growth of structural fluctuations in the normal state.These phenomena are closely related because both the structural change in LBCO and the applied strain in LSCO lift the degeneracy of in-plane oxygen sites. They clarify the importance of strong coupling between the normal-state electronic system and the lattice by a Peierls-type mechanism.  相似文献   

15.
The transport properties in the nominal composition Fe(Se1−xSbx)0.92 (x = 0, 0.05, 0.1, 0.2) system were studied. An abnormality was found on the resistivity curve which was ascribed to the structural transition. It was found that doping with Sb could change the transition temperature of structure transition Ts, while at the same time the change of superconducting transition temperature shows the same tendency. This may suggest that the structural transition and superconductivity has an internal relationship in the iron-based superconductors. Furthermore, two transport behaviors were found up and below structure transition like been reported in cuprates, organics, and 122-phase iron-based superconductors. This might be due to the magnetic order. At last, an insulator–metal transition was found at high temperature, suggesting a strong electron–phonon coupling in this system.  相似文献   

16.
Ti1−xSnxO2 nanocrystals were successfully synthesized by using a simple solvothermal route, and its band energy gap broaden and flat band potential can be rationally regulated with increasing x value. Furthermore, Ti1−xSnxO2 nanocrystals were first used as the photoelectrode material for dye-sensitized solar cells. A cell made of Ti1−xSnxO2 (x = 0.3) exhibited the best photovoltaic performance. This is due to its most narrow band gap energies, most negative flat band potential and lowest dark current densities. After the surface of Ti1−xSnxO2 (x = 0.3) electrode was treated with TiCl4 solution, the cell sensitized by a mixed solution of N719 and D131 dye exhibited the best efficiency of 4.64% under the illumination of 1 sun (AM1.5, 100 mW cm−2).  相似文献   

17.
We studied the YBa2Cu3O7 – x bulk superconductor doped with BaZrO3 up to 50 wt.%, obtained by solid-state reaction powder technology. From DC magnetization loops and low frequency AC susceptibility measurements we determined the influence of the BaZrO3 doping level on the critical temperature, critical current density, field for full penetration, and intergrain lower critical field. The results show that even high content of BaZrO3 does not lead to degradation of the superconducting properties of bulk YBa2Cu3O7 – x .  相似文献   

18.
The structural and superconducting properties of single-phase La2.5–y Y0.5Ca1+y Ba3 (Cu0.88Fe0.12)7O z (LYCaBCuFe) (y= 0.0–1.0) compounds with triple perovskite structure are investigated using X-ray diffraction, resistivity, a.c. susceptibility, and oxygen content measurements. Increasing Ca substitution for La resulted in a decrease in unit cell axes and volume. T c R=0 shows a marginal increase from 31 K to 37 K for y = 0.0–0.21 and thereafter it decreases with increasing y leading to zero T c R=0 at y 0.84. This shows that the suppression of T c from 80 K to 31 K by Fe doping at x = 0.12 La2.5Y0.5CaBa3(Cu1–x Fe x )7O z cannot be compensated by appropriate hole doping with Ca in LaYCaBCuFe.  相似文献   

19.
The Ru-1232 compounds have been synthesized in the (Ru1–xNb x )Sr2(GdCe1.8Sr0.2)Cu2O z system, and effects of Nb substitution for Ru on superconductivity and ferromagnetism of the Ru-1232 compounds have been investigated. First, X-ray powder diffraction study shows that nearly the single 1232 phase samples can be obtained in the x composition range from 0.0 to 0.3. Then, from the electrical resistivity study, it is found that each of the samples shows resistivity dropping phenomenon at two temperatures of T c l and T c h, which originates from superconductivity of the Ru-1232 phase and the Ru-1222 one, respectively. Both of the starting temperatures are lowering with increasing Nb content x. Lastly, from the magnetic susceptibility study, it is found that superconducting transition temperature T c is 20 K for the Ru-1232 sample with x = 0.0 and the ferromagnetic transition temperature T m is about 90 K. This study also shows that both of the values of T c and T m become low with increasing x from 0.0 to 0.3.  相似文献   

20.
Ba1 – x K x BiO3 (BKBO) samples with 0.35 < x < 1 were synthesized by the high pressure and high temperature technique. XRD analysis showed that the BKBO samples were single phase for the whole range of the potassium doping concentration. The change of superconducting transition temperature, T c, as well as lattice parameters have been investigated upon doping concentration. As the K doping concentration (x) increases from x = 0.37, T c decreases from 30.4 K to almost zero at x = 0.74. However, in some BKBO samples without including any barium in the starting composition (x = 1), which is denoted as KBO samples, superconductivity is observed with T c as high as 9 K with partial substitutions of Bi at the K site. Depending on the synthesis condition of the KBO samples, T c and lattice parameters were different from sample to sample. Compared with other superconducting bismuthates, the evolution of T c by potassium doping in the cubic BKBO system is discussed in terms of its electronic band structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号