首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ductile tearing resistance can be characterized in a physically meaningful way by the energy dissipation rate, R. The respective R(a)-curves can be re-evaluated from experimental J R-curves, and the latter can in reverse be obtained from the former by integration. For fully yielded specimens the geometry dependence of R(a)-curves can be scaled by plastic limit-load factors. This normalization opens a possibility for transferring a J R-curve from one specimen geometry to another.  相似文献   

2.
Prediction of the energy dissipation rate in ductile crack propagation   总被引:1,自引:0,他引:1  
In this paper, energy dissipation rate D vs. Δa curves in ductile fracture are predicted using a ‘conversion’ between loads, load‐point displacements and crack lengths predicted by NLEFM and those found in real ELPL propagation. The NLEFM/ELPL link was recently discovered for the DCB testpiece, and we believe it applies to other cracked geometries. The predictions for D agree with experimental results. The model permits a crack tip toughness Ra) which rises from Jc and saturates out when (if) steady state propagation is reached after a transient stage in which all tunnelling, crack tip necking and shear lip formation is established. JR is always greater than the crack tip Ra) and continues to rise even after Ra) levels off. The analysis is capable of predicting the usual D vs. Δa curves in the literature which have high initial values and fall monotonically to a plateau at large Δa. It also predicts that D curves for CCT testpieces should be higher than those for SENB/CT, as found in practice. The possibility that D curves at some intermediate Δa may dip to a minimum below the levelled‐off value at large Δa is predicted and confirmed by experiment. Recently reported D curves that have smaller initial D than the D‐values after extensive propagation can also be predicted. The testpiece geometry and crack tip Ra) conditions required to produce these different‐shaped D vs. Δa curves are established and confirmed by comparison with experiment. The energy dissipation rate D vs. Δa is not a transferable property as it depends on geometry. The material characteristic Ra) may be the ‘transferable property’ for scaling problems in ELPL fracture. How it can be deduced from D vs. Δa curves (and by implication, JR vs. Δa curves) is established.  相似文献   

3.
The concept of R-curves has been adopted to characterise stable crack extension and predict residual strength of thin-walled structures particularly in the aircraft industry. The present contribution uses results of FE simulations of crack extension in panels by the cohesive model to validate analytical procedures for determining J-integral values at large crack extension from measurable quantities, namely the force vs. displacement records. The numerically determined J-integral is taken as the benchmark for the outcome of the analytical formulas. The geometry dependence of J and CTOD based R-curves is investigated and alternative concepts like CTOA and dissipation rate at crack extension are discussed.  相似文献   

4.
The behaviour of side-grooved deep-notch three-point bend test pieces of 20 mm thick HY130 steel has been studied for large amounts of crack growth in three different widths. Growth occurs at limit load and the conventional R-curves follow the pattern that wider pieces give lower R-curves. Analysis of this behaviour is made in terms of the crack-tip opening angle, (CTOA) and the energy dissipation rate, dW dis/Bda, or D, from which a particular R-curve, J dis, can be formed. After an initial transient regime of about 2 mm growth, a steady-state region develops in terms of both CTOA and D. The steady state CTOA reduces with increase of initial width. The energy rate, D, is split into areal and volumetric components, γ and ρ, and, with neglect of the elastic components, ρ is related to the steady-state CTOA. The cumulative dissipation defined by J dis is compared to several conventional R-curves. It is concluded that the interpretation of steady-state crack growth in deep-notch three-point bend pieces can be expressed in terms of either CTOA or D, but that transference of data even from one size of a side-grooved piece to another, let alone to another configuration, cannot yet be made except on a lower bound basis.  相似文献   

5.
The influence of the specimen thickness B and the ligament length b on the J R -curves is numerically investigated for CT specimens. The thickness effect is taken into account with 2-D analyses by dividing a plain sided specimen into a plane stress part and a plane strain part. The fracture process is controlled by experimentally determined critical values of the crack tip opening displacement for crack growth initiation (CTODi) and the crack tip opening angle for stable crack growth (CTOAC). It is shown that for the global behaviour of a plain sided specimen, the B/b ratio is essential. The difference between the geometry dependence of the initiation value of the J-integral and the geometry dependence of the slope of the J R -curves is also shown.  相似文献   

6.
《Engineering Fracture Mechanics》2004,71(9-10):1325-1355
Systematic analysis of the in-plane constraint influence on J-resistance curves is presented. JR curves were also recorded and analyzed beyond the limits of crack extension inside which the stress field can be assumed to be dominated by J-integral. Three steels and four types of specimen: SEN(B), SEN(T), CCT and DENT have been tested. Along with the JR curves the fracture mechanisms have been analyzed with the help of scanning microscopy. The numerical, finite element analysis has been adopted to compute the Q-stresses, as a measure of the in-plane constraint prior to the onset of crack growth. The analysis of the stress field in front of the crack has been performed to check whether the state of stress prior to the crack growth can predetermine the way the crack will grow. It turns out that characteristic features in the JR curves runs can be predicted qualitatively from the Q(a/W) and Q(J) curves. However, there is a good correlation between Q-stress and voids diameters on fractured surfaces. Several patterns in JR curves runs have been observed for tested specimens; e.g. no influence of specimen thickness on JR curves runs was observed for side-grooved specimens. Strong influence of specimen thickness on JR curve shape was observed for non-side-grooved specimens. JR curve run higher for thinner specimens unless they are dominated by plane stress. For bent specimens JR curves run higher for shorter cracks but they run lower for specimens in tension.  相似文献   

7.
It is standard practice to use a G or J resistance curve (R-curve) to describe stable tearing. One important question is whether a JR curve generated in a fully yielded specimen is the same as the GR curve in a structure under small scale yielding. This paper argues that both the JR and GR curves are best viewed as derivatives of the energy dissipation rate D. Energy dissipation rate is not a material property, but various simple rules can be proposed to describe its likely variation with crack extension and with geometry. It is concluded that near size invariance of JR curves is approached when D is high. As the tearing resistance reduces, cracks in structurally relevant configurations will begin to extend in contained yield. Differences between JR and GR curves may then cause problems. In general, the GR curve has a shallower slope as instability approaches. If the whole JR curve (from the small specimen) is very low, it is unlikely that a material would be accepted in a structure; but, if a material has a moderately high initiation toughness, J0.2, combined with a low dJR/da (say less than 25 MPa) it becomes dangerous to rely on JR curve theory to predict crack stability in the structure. An alternative approach using energy dissipation rate is explained.  相似文献   

8.
The crack extension resistance and fracture properties are studied in detail for quasi-brittle materials like concrete with a softening traction-separation law by investigating the complete fracture process. The computed samples are the three-point bending notched beams of concrete with different sizes tested by other researchers. The softening traction-separation law which was proposed by Reinhardt et al. based on direct tension tests for normal concrete materials was chosen in the computations. Different distribution shapes of the cohesive force on the fictitious crack zone were considered for the corresponding loading states. The computations were mainly based on the analytic solutions for this problem using Gauss–Chebyshev quadrature to achieve the integration which is singular at the integral boundary. The crack extension resistance curves in terms of stress intensity (KR-curves) were determined by combining the crack initiation toughness that is the inherent toughness of the material needed to resist the crack initiation in the case that is in the lack of an extension of the main crack with the contribution due to the cohesive force along the fictitious crack zone during the complete processes of fracture. The situation of crack propagation can be judged by comparing KR-curves of crack extension resistance with the stress intensity factor curves which were calculated using the lengths of the extending crack and the corresponding loads at each loading states, e.g., when the crack extension resistance curve(KR-curve) is lower than the stress intensity factor curve, the crack propagation is stable; otherwise, it is unstable. In the computation, the obtained relationship between the crack tip opening displacement CTOD and the amount of crack extension for the complete fracture process is in agreement with the testing results of other researchers. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
An energy dissipation rate concept is employed in conjunction with the J-integral to calculate crack growth resistance of elastic-plastic fracture. Different from Rice’s J-integral, the free energy density is employed in place of the stress working density to define an energy-momentum tensor, which yields that the slightly changed J-integral is path dependent regardless of incremental plasticity and deformational plasticity. The J-integral over the remote contour is split into the plastic influence term and the J FPZ-integral over the fracture process zone which is an appropriate estimate of the separation work of fracture. Finite element simulations are carried out to predict the plane strain mode I crack growth behavior by an embedded fracture process zone. It can be concluded that J-integral characterization is in essence a stress intensity-based fracture resistance similar to the K criterion of linear elastic fracture, and energy dissipation rate fracture resistance can be taken as an extension of the Griffith criterion to the elastic-plastic fracture.  相似文献   

10.
The application of the J and the I-integrals to ductile fracture are discussed. It is shown that, because of the finite size of the fracture process zone (FPZ), the initiation value of the J-integral is specimen dependent even if the plastic constraint conditions are constant. The paradox that the I-integral for steady state elasto-plastic crack growth is apparently zero is examined. It is shown that, if the FPZ at the crack tip is modelled, the I-integral is equal to the work performed in its fracture. Thus it is essential to model the fracture process zone in ductile fracture. The I-integral is then used to demonstrate that the breakdown in applicability of the J-integral to crack growth in ductile fracture is as much due to the inclusion in the J-integral of progressively more work performed in the plastic zone as it is to non-proportional deformation during unloading behind the crack tip. Thus J R -curves combine the essential work of fracture performed in the FPZ with the plastic work performed outside of the FPZ. These two work terms scale differently and produce size and geometry dependence. It is suggested that the future direction of modelling in ductile fracture should be to include the FPZ. Strides have already been made in this direction.  相似文献   

11.
《Composites Science and Technology》2006,66(11-12):1803-1812
Continuous fibre composites are materials that exhibit rather linear elastic deformation behaviour: suggesting brittleness and notch sensitivity. However, notched composites may sustain significant mechanical load. The notch resistance of composites is investigated on quasi-isotropic composite sheets with sharp crack like notches. This allows the use of analytic solutions of the stress field around a crack in a similar way as is used for linear elastic fracture mechanics (LEFM) in homogeneous isotropic solids. Similar to the small scale yielding boundary condition in fracture mechanics, applied on homogeneous isotropic solids, a small-scale non-linear damage condition should be fulfilled for valid LEFM application on quasi-isotropic composites. Indeed, it appeared to be possible to define critical stress intensity factors (K1c) for the quasi-isotropic composite. Moreover, K1c values can quantitatively be related to laminate parameters and to the related damage and deformation processes occurring in a small near crack tip zone with intense non-linearity and strain gradients in the thickness direction. Before the final explosive fracture occurred, stable crack growth was observed. This could be described with R-curves, as done for homogeneous metal sheet specimens. Indeed, also in this case, the R-curves were identical, independent of the length of the initial crack-like notch. The R-curves can be estimated adopting a crack-bridging model. Crack growth occurs at the notch tip in the 0° plies. The other plies bridge the fractured 0° plies. The fracture mechanisms, determining the K1c-values and the shape of the R-curve, are quite different for composites and metals. Yet, the method of fracture mechanics, well established for metals, can obviously also be applied to quasi-isotropic composites.  相似文献   

12.
Linear elastic fracture mechanics describes the fracture behavior of materials and components that respond elastically under loading. This approach is valuable and accurate for the continuum analysis of crack growth in brittle and high strength materials; however it introduces increasing inaccuracies for low-strength/high-ductility alloys (particularly low-carbon steels and light metal alloys). In the case of ductile alloys, different degrees of plastic deformation precede and accompany crack initiation and propagation, and a non-linear ductile fracture mechanics approach better characterizes the fatigue and fracture behavior under elastic-plastic conditions.To delineate plasticity effects in upper Region II and Region III of crack growth an analysis comparing linear elastic stress intensity factor ranges (ΔKel) with crack tip plasticity adjusted linear elastic stress intensity factor ranges (ΔKpl) is presented. To compute plasticity corrected stress intensity factor ranges (ΔKpl), a new relationship for plastic zone size determination was developed taking into account effects of plane-strain and plane-stress conditions (“combo plastic zone”). In addition, for the upper part of the fatigue crack growth curve, elastic-plastic (cyclic J based) stress intensity factor ranges (ΔKJ) were computed from load-displacement records and compared to plasticity corrected stress intensity factor ranges (ΔKpl). A new cyclic J analysis was designed to compute elastic-plastic stress intensity factor ranges (ΔKJ) by determining cumulative plastic damage from load-displacement records captured in load-control (K-control) fatigue crack growth tests. The cyclic J analysis provides the true fatigue crack growth behavior of the material. A methodology to evaluate the lower and upper bound fracture toughness of the material (JIC and Jmax) directly from fatigue crack growth test data (ΔKFT(JIC) and ΔKFT(Jmax)) was developed and validated using static fracture toughness test results. The value of ΔKFT(JIC) (and implicitly JIC) is determined by comparing the plasticity corrected elastic fatigue crack growth curve with the elastic-plastic fatigue crack growth curve. A most relevant finding is that plasticity adjusted linear elastic stress intensity factor ranges (ΔKpl) are in remarkably good agreement with cyclic J analysis results (ΔKJ), and provide accurate plasticity corrections up to a ΔK corresponding to JIC (i.e. ΔKFT(JIC)). Towards the end of the fatigue crack growth test (above ΔKFT(JIC)) when plasticity is accompanied by significant tearing, the cyclic J analysis provides a more accurate way to capture the true behavior of the material and determine ΔKFT(Jmax). A procedure to decouple and partition plasticity and tearing effects on crack growth rates is given.Three cast Al-Si-Mg alloys with different levels of ductility, provided by different Si contents and heat treatments (T61 and T4) are evaluated, and the effects of crack tip plasticity on fatigue crack growth are assessed. Fatigue crack growth tests were conducted at a constant stress ratio, R = 0.1, using compact tension specimens.  相似文献   

13.
To evaluate the elastic-plastic fracture toughness parameter of nuclear pressure-vessel steel A533B-1, a newly developed technique (the recrystallization-etch technique) for plastic strain measurement was applied to different sizes of compact tension specimens with a crack length/specimen width of 0.6–0.5 that were tested to generate resistance curves for stable crack extensions. By means of the recrystallization-etch technique, the plastic energy dissipation or work done within an intense strain region at the crack tip during crack initiation and extension was measured experimentally. Furthermore, the thickness effects on this crack tip energy dissipation rate were examined in comparison with other fracture-parameter J integrals. Thickness effects on critical energy dissipation and energy dissipation rate during crack extension were obtained and the energy dissipation rate dW p/da in the mid-section shows a constant value irrespective of specimen geometry and size, which can be used as a fracture parameter or crack resistance property.  相似文献   

14.
Stable and unstable tearing in metals is currently analysed by J integral theory, or by the GR curve approach. This paper explains an alternative analysis route based on energy dissipation rate, D. It is shown that the implication of increasing toughness with crack growth in GR and JR curves is misleading. Even in small scale yielding (SSY), it is possible to have stable tearing under increasing G or J whilst at the same time D is constant (or even reducing) with crack growth. New terms: C for crack driving force, D* for geometry normalised D, Dssy for D in SSY, and crack stability index are explained. A D based fracture analysis diagram is introduced. Comparisons are made between energy dissipation rate, J integral, and GR curve instability prediction methods. It is shown that, in most instances, these different approaches are compatible; but that the use of JR curves derived in fully yielded test pieces to predict failure in SSY has the potential to lead to an unconservative instability prediction. The practical advantage of the energy dissipation rate approach is that it can be applied to all product thicknesses at any extent of crack growth. The major advantage compared to the GR approach is that toughness measurements can be made on much smaller specimens.  相似文献   

15.
Size effect on fracture toughness and fracture energy of composites is investigated by a simple asymptotic approach. This asymptotic analysis based on the elastic/plastic fracture transition of a large plate with a small edge crack is extended to study fracture of composite. A reference crack length, a*, is used in the model, which indicates an ideal elastic/plastic fracture transition defined by the yield strength and plane strain fracture toughness criteria. Experimental results of cementitious materials available in literature are analyzed and compared. It is shown that the common KR-curves can also be obtained by the current asymptotic model. Furthermore, a local fracture energy distribution concept is also discussed and compared with the present asymptotic approach.  相似文献   

16.
17.
Prediction of maximum load bearing capacity and crack growth for ductile materials using existing models like J-R curve approach has the problem of transferability and the use of micro-mechanical model (e.g. Gurson Tvergaard, and Needleman [Tvergaard V, Needleman A. Analysis of cup cone fracture in a round tensile bar. Acta Metall 1984;32:157-169]) are limited by the requirements of the huge computation time and large numbers of critical metallurgical parameters as input to analysis. Marie and Chapuliot [Marie S, Chapuliot S. Ductile tearing simulation based on local energy criterion. Fatigue Fract Engng Mater Struct 1998;21:215-227] of CEA, France, proposed a simple but convenient ductile crack growth model using critical fracture energy (Gfr) for crack growth and Ji for initiation, both of which are material parameters. They also proposed several schemes, namely, graphical and slope of modified plastic J-integral vs crack growth, JM-pl − Δa methods for the evaluation of the value of Gfr from specimens as well as from components. In all these methods the role of non-crack displacement in the crack growth process was not considered. The necessary modifications due to non-crack displacement in the above methods to evaluate the values of Gfr was studied and published [Acharyya S, Dhar S, Chattopadhyay J. (2003). The effect of non-crack component on Critical fracture energy on ductile material. Int J Pressure Vessels Piping 2004;81:345-353] by the authors earlier. In this paper, the modified methods and formulation have been applied to evaluate the values of Gfr from experimental and FE simulated results for compact tensile (CT), three point bend (TPB) specimens and also from components like pipes and elbows. Then statistical estimation is done from these Gfr values to assess whether Gfr can be accepted as constant value material parameter. Finally, the mean value of Gfr obtained from statistical computation is used as material constant along with crack initiation toughness parameter (Ji)SZW to consider crack growth for FE simulation of load vs load-line-displacement (LLD) and load vs crack growth curves for different specimens and components. Finite element simulated results are compared with the experimental results and good matching between the two for several components are found and maximum error in prediction of maximum load is found to be within 12%.  相似文献   

18.
This study presents a new fracture formulation to describe the ductile tearing and unstable fracture failure for circular hollow section (CHS) joints under monotonically increasing brace tension. The initiation of the ductile tearing occurs when the crack driving force in an assumed initial shallow crack reaches the material fracture toughness determined from a standard fracture toughness test. The joint behavior prior to the ductile crack initiation follows a previously proposed nonlinear formulation based on the latest strength equations recommended by the International Institute of Welding. The load–deformation characteristics beyond the crack initiation assume that the energy release rate and the amount of crack extension adhere to the experimentally measured JR curve, prior to the unstable fracture failure. Unstable fracture, which leads to the total loss of the joint capacity, occurs when the crack driving force reaches the maximum fracture resistance determined from the JR curve test. The proposed load–deformation representation for tubular joints, when implemented in the large-scale K-frame pushover analysis with a material fracture toughness test, predicts successfully the global frame response governed by the joint fracture failure, as observed in the frame test.  相似文献   

19.
Crack growth rate and crack closure during fatigue of type 304 stainless steel are measured with an optical microscope and television camera. Based on the crack closure data an effective stress intensity range ΔKeff is calculated. The da/dn vs ΔKeff-curves indicate that crack closure could account for the R-influence as normally derived from da/dn vs ΔK-curves. Measurements of striation spacing lead to the conclusion that at higher da/dn values crack growth mechanisms dependent on Kmax play an important role; these mechanisms are probably responsible for the R-influence in the range of the higher da/dn-values.  相似文献   

20.
A composite crack profile (CCP) model has been applied for the evaluation of CTOD in the elastic-plastic crack growth situations prevailing in a structural steel. The results have been compared with the ones obtained by conventional method (using plastic hinge model such as Wells etc.) The CTOD-Resistance Curves (δR-curves) have also been obtained as a function of specimen thickness, a/w ratio and the loading geometry by using the CCP model. The significance of crack initiation CTOD (δi) and the maximum load CTOD (δm) has been discussed in relation to various geometrical parameters (i.e. thickness, a/w ratio and loading geometry).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号