首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cross-linked polyamides and polyamide gels were prepared from maleimide-containing polyamides and a tri-functional furan compound and showed thermal reversibility in cross-linking behavior and in gel formation through Diels-Alder (DA) and retro-DA reactions. The rate constant k of the DA cross-linking reaction were 1.25-4.83×10−5 dm3 mol−1 s−1 in the temperature range of 20-60 °C with an activation energy of 32.1 kJ mol−1. The cross-linking densities, thermal properties, and thermal reversibility of the polyamides/furan polymers were adjustable with the contents of maleimide groups in polyamides.  相似文献   

2.
The interfacial adsorption behaviour of the amino acid, phenylalanine (Phe), was studied at a polycrystalline Au surface in 0.05 M KClO4 using cyclic voltammetry, chronocoulometry (CC) and electrochemical quartz crystal nanobalance (EQCN) frequency measurements. The frequency was observed to decrease with increasing concentration of Phe, indicating that the frequency measurements were following analyte adsorption directly. Both CC and EQCN frequency measurements showed a two-stage adsorption process, consistent with the molecule being adsorbed in the horizontal position at negative potentials, but rearranged to the more upright position at potentials more positive to the potential of zero charge. From the slopes at the onset of each of these two regions in plots of change in mass from the EQCN frequency measurements versus the surface charge density from CC measurements, the calculated molar mass corresponded to that of Phe displacing adsorbed water molecules for EQCN measurements made with small bulk concentrations of Phe (i.e., <1 × 10−4 mol L−1).The adsorption process from CC measurements for Phe, described using the Henry adsorption isotherm, gave Gibbs energies of adsorption (ΔGADS) ranging from −18 to −35 kJ mol−1 over the potential range of −0.6 to 0.6 V. The observed decrease in frequency of the EQCN measurements with additions of aliquots of amino acid and the substantial ΔGADS values suggests that Phe adsorbs onto the surface via chemisorption. Surface concentrations (1.2 × 10−10 mol cm−2) were in excellent agreement between the EQCN and CC measurements for small bulk concentrations of Phe (4.0 × 10−5 mol L−1), in very good agreement with previously published results at the Au(1 1 1) surface. Thus, for small bulk concentrations of analyte, these electrochemical techniques complement one another to enhance our knowledge of the behaviour of thin organic films at electrode surfaces.  相似文献   

3.
Boleslav Taraba 《Fuel》2010,89(11):3598-3601
Subaquatic oxidation of two bituminous coals by water-dissolved oxygen was investigated using batch reactor equipped with membrane oxygen sensor. Effects of time, temperature and coal grain size were studied as basic parameters influencing the oxidation process. Obtained results showed the subaquatic coal oxidation can be considered as interaction of the first reaction order with respect to oxygen. From temperature dependence of oxidation rate, activation energies = 72 ± 4 kJ mol−1 and/or 50 ± 4 kJ mol−1 were calculated. For the samples, oxygen consumption RO2 was found to be in the range of 2 × 10−7 mol O2 kg−1 s−1 to 6 × 10−7 mol O2 kg−1 s−1, such values being quite comparable with RO2 for aerial oxidation of bituminous coals.  相似文献   

4.
Nano-γ-Al2O3 is dispersed onto the glass carbon electrode (GCE) by polishing. This nanostructured modified GCE exhibits a great enhancement to the redox responses of 3-nitrobenzaldehyde thiosemicarbazone (3-NBT). In comparison with bare GCE, 3-NBT gives a more sensitive voltammetric response because of the nanoparticle’s unique properties. The lowest detectable concentration (3σ) of 3-NBT is estimated to be 1.18 × 10−6 M (accumulation for 4 min). The linear relationship between peak current and concentration of 3-NBT holds in the range 1.0 × 10−5 M to 1.0 × 10−4 M (r = 0.9981). The electrochemical properties of 3-NBT on this modified electrode have been investigated with various electrochemical methods. The results indicate that the transference of one electron and one proton involves electrode radical reaction processes I and II, respectively. The coverage value (Γ) of 1.62 × 10−9 mol cm−2 was calculated and the electrochemical parameters, diffusion coefficient D (2.54 × 10−3 cm2 s−1, 2.03 × 10−3 cm2 s−1) and reaction rate constant ks (5.9573 s−1, 7.15 × 10−2 cm s−1) were obtained for quasi-reversible system I and irreversible system II, respectively.  相似文献   

5.
A novel electroactive material for ascorbic acid (AA) determination was successfully prepared by plating/potential cycling method. The cobalt film was first deposited on the surface of glassy carbon electrode (GCE) in CoSO4 solution by potential cycling, and then a cobalt film on the surface of GCE was activated by potential cycling in 0.1 mol L−1 NaOH. The electrochemical performance of the resulted film (Co/GCE) and factors affecting its electrochemical activity were investigated by cyclic voltammetry and amperometry. This film electrode exhibited good electrocatalytic activity to the oxidation of AA. This biosensor had a fast response of AA less than 3 s and excellent linear relationships were obtained in the concentration range of 3 × 10−7 to 1 × 10−4 mol L−1 with a detection limit of 2 × 10−7 mol L−1 (S/N = 3) under the optimum conditions. Moreover, the selectivity, stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

6.
The propagation and termination rate coefficients for bulk polymerization of the butyl acrylate dimer (BA dimer) are determined by pulsed laser techniques. The rate coefficient for propagation, kp, is deduced for temperatures from 20 to 90 °C via the pulsed laser polymerization-size exclusion chromatography (PLP-SEC) method at pulse repetition rates between 1 and 10 Hz. The Arrhenius parameters were found to be: EA(kp) = (34.2 ± 1.0) kJ mol−1 and A(kp)/L mol−1 s−1 = (1.08 ± 0.49) × 107 L mol−1 s−1. The termination rate coefficient, kt, has been measured via SP-PLP-ESR, single pulse-pulsed laser polymerization in conjunction with time-resolved electron spin resonance detection of radical concentration. The resulting Arrhenius parameters as deduced from the temperature range −15 to +30 °C are: EA(〈kt〉) = (22.8 ± 3.7) kJ mol−1 and log(A/L mol−1 s−1) = 10.6 ± 1. The chain-length dependence of kt was studied at 30 °C. For short chains a significant dependence was found which may be represented by an exponent α = 0.79 in the power-law expression kt(i) = kt0i−α.  相似文献   

7.
The absorption of CO2 into aqueous solution of 2-(1-piperazinyl)-ethylamine (PZEA) were studied at 303, 313, and 323 K within the amine concentration range of 0.083-1.226 kmol m−3 using a wetted wall column absorber. The experimental results were used to interpret the kinetics of the reaction of CO2 with PZEA within the amine concentration range of 0.150-1.226 kmol m−3 for the above mentioned temperature range. Based on the pseudo-first-order condition for the CO2 absorption, the overall second order reaction rate constants were determined from the kinetic measurements. The reaction order was found to be in between 0.99 and 1.03 with respect to amine for the later mentioned concentration range. The kinetic rate parameters were calculated and presented at each experimental condition. The second-order rate constants k2, were obtained as 31867.6, 56354.2, and 100946 m3 kmol-1 s-1 at 303, 313, and 323 K, respectively, with activation energy of 47.3 kJ mol−1. This new amine in the field of acid gas removal can be used as an activator by mixing with other alkanolamine solvents due to its very high rate of reaction with CO2.  相似文献   

8.
Fang Ye  Lishi Wang 《Electrochimica acta》2008,53(12):4156-4160
5-[o-(4-Bromine amyloxy)phenyl]-10,15,20-triphenylporphrin (o-BrPETPP) was electropolymerized on a glassy carbon electrode (GCE), and the electrocatalytic properties of the prepared film electrode response to dopamine (DA) oxidation were investigated. A stable o-BrPETPP film was formed on the GCE under ultrasonic irradiation through a potentiodynamic process in 0.1 M H2SO4 between −1.1 V and 2.2 V versus a saturated calomel electrode (SCE) at a scan rate of 0.1 V s−1. The film electrode showed high selectivity for DA in the presence of ascorbic acid (AA) and uric acid (UA), and a 6-fold greater sensitivity to DA than that of the bare GCE. In the 0.05 mol L−1 phosphate buffer (pH 6.0), there was a linear relationship between the oxidation current and the concentration of DA solution in the range of 5 × 10−7 mol L−1 to 3 × 10−5 mol L−1. The electrode had a detection limit of 6.0 × 10−8 mol L−1(S/N = 3) when the differential pulse voltammetric (DPV) method was used. In addition, the charge transfer rate constant k = 0.0703 cm s−1, the transfer coefficient α = 0.709, the electron number involved in the rate determining step nα = 0.952, and the diffusion coefficient Do = 3.54  10−5 cm2 s−1 were determined. The o-BrPETPP film electrode provides high stability, sensitivity, and selectivity for DA oxidation.  相似文献   

9.
5-Hydroxytryptophan (5-HTP) was covalently grafted on the surface of glassy carbon electrodes (GCEs) using cyclic voltammetric method in a phosphate buffer solution. The prepared electrode, denoded as 5-HTP/GCE, was characterized by X-ray photoelectron spectroscopy, cyclic voltammetry and differential pulse voltammetry (DPV). Tryptophan grafted GCE (TRP/GCE) and 5-hydroxytryptamine grafted GCE (5-HTP/GCE) were also prepared by the same method for comparison. It was found that the electrocatalytic activities toward the oxidation of uric acid (UA) and ascorbic acid (AA) was in the order of 5-HT/GCE > 5-HTP/GCE > TRP/GCE for UA oxidation and 5-HT/GCE = 5-HTP/GCE > TRP/GCE for AA oxidation. However, the CV current sensitivity was estimated as 4:2:1 for 5-HTP/GCE:5-HT/GCE:TRP/GCE. The DPV peaks for UA and AA oxidation appeared at 0.07 V and 0.34 V versus SCE, respectively, allowing simultaneous determination in mixtures. A linearly response in the range of: 5.0 × 10−7 to 1.1 × 10−5 M with the detection limit (s/n = 3) of 2.8 × 10−7 M for UA determination, and a linear response in the range of: 5.0 × 10−6 to 1.0 × 10−4 M with the detection limit of 4.2 × 10−6 M for AA determination were obtained. This electrode was used for UA and AA determinations in human urine samples satisfactorily.  相似文献   

10.
A robust and effective composite film combined the benefits of room temperature ionic liquid (RTIL), chitosan (Chi) and multi-wall carbon nanotubes (MWNTs) was prepared. Cytochrome c (Cyt c) was successfully immobilized on glassy carbon electrode (GCE) surface by entrapping in the composite film. Direct electrochemistry and electrocatalysis of immobilized Cyt c were investigated in detail. A pair of well-defined and quasi-reversible redox peaks of Cyt c was obtained in 0.1 mol L−1 pH 7.0 phosphate buffer solution (PBS), indicating the Chi-RTIL-MWNTs film showed an obvious promotion for the direct electron transfer between Cyt c and the underlying electrode. The immobilized Cyt c exhibited an excellent electrocatalytic activity towards the reduction of H2O2. The catalysis current was linear to H2O2 concentration in the range of 2.0 × 10−6 to 2.6 × 10−4 mol L−1, with a detection limit of 8.0 × 10−7 mol L−1 (S/N = 3). The apparent Michaelis-Menten constant (Km) was calculated to be 0.45 ± 0.02 mmol L−1. Moreover, the modified electrode displayed a rapid response (5 s) to H2O2, and possessed good stability and reproducibility. Based on the composite film, a third-generation reagentless biosensor could be constructed for the determination of H2O2.  相似文献   

11.
This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn2O4 thin film electrode/aqueous solution (1 mol dm−3 LiNO3) interface. The zeta potential of LiMn2O4 particles showed a negative value in 1 × 10−2 mol dm−3 LiNO3 aqueous solution, while it was measured as positive in the presence of 1 × 10−2 mol dm−3 Cu(NO3)2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO3)2 was estimated to be 35 kJ mol−1, which was ca. 10 kJ mol−1 larger than that observed in the solution without Cu(NO3)2. These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction.  相似文献   

12.
The electrochemical behavior of p-tert-butyl calix[8]arene has been investigated by cyclic voltammetry. The result shows that there is an irreversible electrochemical oxidative wave when the potential ranges from −0.3 to 1.6 V versus Ag/0.1 M AgNO3 in acetonitrile (Ag/Ag+). At 25 °C, the peak potential is ca. 1.43 V (versus Ag/Ag+) at scan rate of 0.05 V s−1. The number of the electrons transferred in the electrochemical reaction is four. The diffusion coefficient of p-tert-butyl calix[8]arene is 2.8 × 10−5 cm2 s−1. The diffusion activation energy is 12.3 kJ mol−1.  相似文献   

13.
Elanio A. Medeiros 《Fuel》2011,90(4):1696-1699
The rate constants for the quenching of biacetyl phosphorescence by a series of conjugated dienes were measured. 1,3-cyclohexadiene (kqP = 2.94 × 109 s−1 mol−1 L), 2,5-dimethyl-2,4-hexadiene (kqP = 1.91 × 109 s−1 mol−1 L), 2,4-dimethyl-1,3-pentadiene (kqP = 1.78 × 108 s−1 mol−1 L), 3-methyl-1,3-pentadiene (kqP = 1.22 × 108 s−1 mol−1 L), 2,4-hexadiene (kqP = 1.35 × 108 s−1 mol−1 L) and trans-2-methyl-1,3-pentadiene (kqP = 3.84 × 108 s−1 mol−1 L). Cyclooctene also quenched biacetyl phosphorescence but with a lower rate (kqP = 1.97 × 107 s−1 mol−1 L). Quenching was not observed with 1-methylnaphthalene. Since conjugated dienes quench biacetyl phosphorescence preferentially, this method was studied using gasoline samples with known diene composition. A good correlation was found between the rate of quenching of biacetyl by the gasoline samples and the quantity of conjugated dienes present.  相似文献   

14.
A multiwall carbon nanotubes (MWNTs)-chitosan modified glassy carbon electrode (GCE) exhibits attractive ability for highly sensitive cathodic stripping voltammetric measurements of bromide (Br). In pH 1.8 H2SO4 solution, a substantial increase in the stripping peak current of Br (compared to bare GCE and chitosan modified GCE) is observed using MWNTs-chitosan modified electrode. Operational parameters were optimized and the electrochemical behaviors of Br were studied by different electrochemical methods. The kinetics parameters were measured, the number of electron transfer (n) was 1 and the transfer coefficient (α) is 0.17. A wide linear calibration range (3.6 × 10−7-1.4 × 10−5 g mL−1) was achieved, with a detection limit of 9.6 × 10−8 g mL−1. The mechanism of electrode reaction was fully discussed.  相似文献   

15.
Marco Drache  Michael Buback 《Polymer》2005,46(19):8483-8493
Cumyl dithiobenzoate (CDB) mediated methyl acrylate (MA) bulk polymerizations at 80 °C, using CDB concentrations between 1.5×10−2 and 5.0×10−2 mol L−1, were modeled via a novel Monte Carlo simulation procedure with respect to experimental time-dependent conversions, X, number average molecular weights, Mn, and weight average molecular weights, Mw. The simulations were based upon individual treatment of 5×108 discrete molecules in accordance to their actual reaction pathways. The kinetic scheme employed includes termination reactions of intermediate RAFT radicals with propagating radicals and reaction steps of the RAFT pre-equilibrium, which are different from those of the RAFT main equilibrium. The equilibrium constant of the main equilibrium of the CDB/MA system at 80 °C was found to be K=1.2×104 L mol−1, indicating a relatively stable intermediate radical. The concentration of the intermediate RAFT radical, although not employed as experimental input data for the modeling, was calculated by using the obtained set of kinetic parameters as being in excellent agreement with experimental electron spin resonance spectroscopic data.  相似文献   

16.
To more accurately investigate the nucleation, crystallization and dispersion behaviors of silica particles in polymers, the composites of PET with monodisperse SiO2-PS core-shell structured particles were prepared with SiO2 size from 380 nm to 35 nm.For these SNPET samples, DSC results showed that the nucleation rate of silica particles increased as their size decreased, in which 35 nm SiO2 particles produced the most obvious nucleation effect. At 2.0 wt.% load of 35 nm silica, Avrami equation proved that the isothermal crystallization rate G of SNPET was ca. 30% higher than that of pure PET and the crystallization activation energy for SNPET was −218.7 kJ mol−1 lower than −196.1 kJ mol−1 for PET. While, the non-isothermal crystallization ΔE for SNPET was −199.8 kJ mol−1 lower than −185.5 for PET.On non-isothermal crystallization, Jeziorny equation presented the primary and secondary crystallization stages in PET and SNPET, in which nano SiO2 accelerated the crystallization rate. Their Ozawa number m was from 2.1 to 2.7, which was smaller than that of Avrami number n.The nucleation and dispersion behaviors of SiO2 particles were directly observed. POM results demonstrated that SNPET samples crystallized more quickly from melt and their crystallization rate increased as silica load increases but accelerated at 2-3 wt.%. The spherulites grew well in PET but their size was smaller in SNPET due to the silica barrier on their growth. SEM and TEM observed the homogeneous silica dispersion morphology and the vivid ordered patterns formed in SNPET. The monodisperse particles are highly expected to give more accurate and valuable references than multi-scale ones in obtaining novel advanced PET composites.  相似文献   

17.
It was recently shown that an abnormally fast transport of CO molecules takes place at the electrode/electrolyte interface of Pt and PtRu electrodes in H2SO4 and HClO4 solutions. In the present paper, this phenomenon is tested for other gases, such as hydrogen and oxygen. The fast transport is also observed at the solid/electrolyte solution interface of other electrode materials and at the glass/electrolyte interface. Several experiments are shown, demonstrating that mass transfer takes place at a velocity, which is more than one order of magnitude higher than expected for usual diffusion conditions.Assuming radial mass transfer at the interface of a Pt disc, the activation energy, Ea = 23 kJ mol−1, was calculated from Arrhenius plots. The same value was measured in H2SO4 and HClO4 as supporting electrolytes. The mass transport parameter, Y, at 298 K was 4.8 × 10−3 cm2 s−1 and 2.9 × 10−3 cm2 s−1 in 0.5 M H2SO4 and 1 M HClO4 respectively.  相似文献   

18.
Hao Yu 《Electrochimica acta》2007,52(13):4403-4410
The gallium hexacyanoferrate (GaHCF) was synthesized chemically and characterized by FTIR technique. Its electrochemical behavior was carefully investigated by fabricating a GaHCF modified carbon paste electrode in various supporting electrolyte. The experimental results showed that in KNO3, K2SO4, KCl and other supporting electrolyte, GaHCF yielded one pair of ill-defined redox waves with a formal potential of 0.9 V (versus SCE). In 0.050 mol L−1 phosphate buffer solution (PBS, pH 6.8), however, GaHCF yielded one pair of well-defined redox peaks with a formal potential of 0.222 V. Furthermore, this modified electrode exhibited a high electrocatalytic activity toward the reduction of H2O2 in pH 6.8 PBS, with over-potential dramatically lower than that of on the bare carbon paste electrode. Amperometry was used for the determination of H2O2, under the optimal conditions, a linear dependence of the catalytic current versus H2O2 concentration was obtained in the range of 4.9 × 10−6 to 4.0 × 10−4 mol L−1 with a detection limit of 1 × 10−6 mol L−1 when the signal-to-noise ratio was 3, and a sensitivity of 27.9 μA mM−1 (correlation coefficient of 0.997). Chronoamperometry was used to conveniently determine the diffusion coefficient of H2O2 in the solution.  相似文献   

19.
A novel hybrid material silica gel chemically modified by diethylenetriaminemethylenephosphonic acid GH-D-P has been developed and characterized. The results of the adsorption thermodynamics and kinetics of the as-synthesized GH-D-P for Au(III) showed that this high efficient inorganic–organic hybrid adsorbent had good adsorption capacity for Au(III), and the best interpretation for the experimental data was given by the Langmuir isotherm equation, the maximum adsorption capacity for Au(III) is 357.14 mg/g at 35 °C. Moreover, the study indicated the adsorption kinetics of GH-D-P could be modeled by the pseudo-second-order rate equation wonderfully, and the adsorption thermodynamic parameters ΔG, ΔH and ΔS were −20.43 kJ mol−1, 9.17 kJ mol−1, and 96.24 J K−1 mol−1, respectively. Therefore, the high adsorption capacity make this hybrid material have significant potential for Au(III) uptake from aqueous solutions using adsorption method.  相似文献   

20.
A new gold nanoparticles-modified electrode (GNP/LC/GCE) was fabricated by self-assembling gold nanoparticles to the surface of the l-cysteine-modified glassy carbon electrode. The modified electrode showed an excellent character for electrocatalytic oxidization of uric acid (UA) and ascorbic acid (AA) with a 0.306 V separation of both peaks, while the bare GC electrode only gave an overlapped and broad oxidation peak. The anodic currents of UA and AA on the modified electrode were 6- and 2.5-fold to that of the bare GCE, respectively. Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of UA and AA has been explored at the modified electrode. DPV peak currents of UA and AA increased linearly with their concentration at the range of 6.0 × 10−7 to 8.5 × 10−4 mol L−1 and 8.0 × 10−6 to 5.5 × 10−3 mol L−1, respectively. The proposed method was applied for the detection of UA and AA in human urine with satisfactory result.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号