首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg-Ni-Ti-based hydrogen storage alloys Mg0.9Ti0.1Ni1−xMx (M = Co, Mn; x = 0, 0.1, 0.2) were prepared by means of mechanical alloying (MA). The effects of partial substitution of Ni with Co or Mn on the microstructures and electrochemical performance of the alloys were investigated. The result of X-ray diffraction (XRD) shows that the alloys exhibit dominatingly amorphous structures. The electrochemical measurements indicate that the substitution of Ni can dramatically enhance the cycle stability of Mg-Ni-Ti-based alloys. After 50 charge/discharge cycles, the capacity retention rate of the alloy electrodes increases from 30% (Mg0.9Ti0.1Ni) to 59% (Mg0.9Ti0.1Ni0.9Co0.1), 58% (Mg0.9Ti0.1Ni0.9Mn0.1), 46% (Mg0.9Ti0.1Ni0.8Co0.2) and 53% (Mg0.9Ti0.1Ni0.8Mn0.2), respectively. Among these alloys, the Mg0.9Ti0.1Ni0.9Mn0.1 alloy presents better overall electrochemical performance. The cyclic voltammograms (CV) and anti-corruption test reveal that the electrochemical cycle stability of these alloys is improved by substituting Ni with Co or Mn.  相似文献   

2.
The melt-spinning technique is applied to the preparation of the nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1−xMnx (x = 0, 0.1, 0.2, 0.3, 0.4). The as-spun alloy ribbons possessing a continuous length, a thickness of about 30 μm and a width of about 25 mm were prepared. The structures of the as-spun alloy ribbons are characterized by XRD and TEM. The electrochemical performances of the as-spun alloy ribbons are measured by an automatic galvanostatic system. The results show that no amorphous structure is detected in the as-spun Mg2Ni alloy, whereas the as-spun Mg2Ni0.6Mn0.4 alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni notably intensifies the amorphous forming ability of the Mg2Ni-type alloy. The amorphization degree of the as-spun alloys containing Mn increases with increasing spinning rate. The melt spinning also significantly enhances the electrochemical performances such as the discharge capacity and the electrochemical cycle stability of the Mn-containing alloys. Furthermore, the high rate dischargeability (HRD) of the (x ≤ 0.1) alloys increases with an increase in the spinning rate, while for the (x ≥ 0.2) alloys, the HRD exhibits a maximum value at a particular spinning rate, and it varies with the change in Mn contents of the alloys.  相似文献   

3.
Low Co AB5-type MmNi3.8Co0.4Mn0.6Al0.2Bx (x=0, 0.1, 0.2, 0.3, 0.4) hydrogen storage alloys were prepared by cast and rapid quenching. The microstructures and electrochemical performances of the as-cast and quenched alloys were analysed and measured. The effects of boron additive and rapid quenching technique on the microstructures and electrochemical properties of as-cast and quenched alloys were investigated comprehensively. The experimental results showed that the microstructure of as-cast MmNi3.8Co0.4Mn0.6Al0.2Bx (x=0, 0.1, 0.2, 0.3, 0.4) alloys was composed of CaCu5-type main phase and a small amount of CeCo4B-type secondary phase. The abundance of the secondary phase increases with the increase of boron context x. The rapid quenching techniques were used in the preparation of the alloys. The amount of secondary phase in the alloys decreased with the increase of quenching rate. Rapid quenching made lattice constants increase slightly. The effects of rapid quenching on the electrochemical performances of the alloys are very significant. The discharge capacity of the alloys decreased obviously and the cycle stability increased dramatically with the increase of quenching rate. Rapid quenching made the activation capability of the alloys lowered. However, the activate performance and high rate discharge capability as well as discharge voltage characteristic of the alloys were modified obviously with the increase of boron content x.  相似文献   

4.
Iron is a key element in the development of Co-free AB5-type hydrogen storage alloys. The aim of this work is to systematically investigate the effects of Fe and Co on the electrochemical properties of LaNi4.6−xMn0.4Mx (M = Fe or Co, x = 0, 0.25, 0.5 and 0.75) hydrogen storage alloys under relatively low temperatures (273, 253 and 233 K). The results showed that substitution of Fe for Ni reduced the low temperature electrochemical performance much more seriously than that of Co. Exchange current density (I0), charge-transfer resistance (Rct) and hydrogen diffusion coefficient (D) were determined based on the study of linear polarization, electrochemical impedance spectrum (EIS) and galvanostatic discharge, respectively. Both the hydrogen diffusion in the bulk of alloy particles and the electrochemical reaction at the alloy electrolyte interface were found to be greatly limited as the decrease of temperature. During the EIS analysis, interestingly, we found that the semicircle in the high frequency region increased dramatically with the decrease of temperature. The electrochemical process corresponding to this semicircle was proposed to be related to the oxide layer on the surface of alloy particles. Novel explanations of EIS response in metal hydride electrodes were proposed accordingly.  相似文献   

5.
The structure and electrochemical properties of TiV1.1Mn0.9Nix (x = 0.1-0.7) solid solution electrode alloys have been investigated. It is found that these alloys mainly consist of a solid solution phase with body centered cubic (bcc) structure and a C14 Laves secondary phase. The solid solution alloys show easy activation behavior, high temperature dischargeability, high discharge capacity and favorable high-rate dischargeability as a negative electrode material in Ni-MH battery. The maximum discharge capacity is 502 mAh g−1 at 303 K when x = 0.4. Electrochemical impedance spectroscopy (EIS) test shows that the charge-transfer resistance at the surface of the alloy electrodes decreases obviously with increasing Ni content.  相似文献   

6.
The structure and electrochemical characteristics of melted composite Ti0.10Zr0.15V0.35Cr0.10Ni0.30 + x% LaNi5 (x = 0, 1, 5 and 10) hydrogen storage alloys have been investigated systematically. XRD shows that the matrix phase structure of V-based solid solution phase with a BCC structure and C14 Laves phase with hexagonal structure is not changed after adding LaNi5 alloy. However, the amount of the secondary phase increases with increasing LaNi5 content. Field emission scanning electron microscopy-energy dispersive spectroscopy (FESEM-EDS) shows that the C14 Laves phase contains more Zr and the white lard phase has a composition close to (Zr, Ti)(V, Cr, Ni, La)2. The electrochemical measurements show that the hysteresis effect decreases dramatically with increasing x. The activation performance, the low temperature dischargeability, high rate dischargeability and cyclic stability of composite alloy electrodes increase greatly with increasing x. The maximum discharge capacity first increases as x increases from 0 to 5 and then decreases when x increases further from 5 to 10. The improvement of the electrochemical characteristics caused by adding LaNi5 seems to be related to formation of the secondary phase.  相似文献   

7.
For (Ti1−xVx)2Ni (x = 0.05, 0.1, 0.15, 0.2 and 0.3) ribbons, synthesized by arc-melting and subsequent melt-spinning techniques, an icosahedral quasicrystalline phase was present, either in the amorphous matrix or together with the stable Ti2Ni-type phase. With increasing x values, the maximum discharge capacity of the alloy electrodes increased until reached 271.3 mAh/g when x = 0.3. The cycling capacity retention rates for these electrodes were approximately 80% after a preliminary test of 30 consecutive cycles of charging and discharging. Ti1.7V0.3Ni alloy electrode displayed the best high-rate discharge ability of 82.7% at the discharge current density of 240 mA/g.  相似文献   

8.
The electrochemical performance of ZrMn0.5V0.4Ni1.1Crx (x=0.1, 0.2, 0.3, 0.4) system was investigated intensively. All alloys are multiphase structure; the type and amount of secondary phase decrease with content of Cr increases. The electrochemical activities, capacities, and HRDs of ZrMn0.5V0.4Ni1.1Crx alloy electrodes are worse than that of matrix alloy. The alloy electrodes at x=0.1, 0.2 have lower self-discharge rate than that of matrix alloy electrode. In general, adding Cr decrease the activity, capacity, and HRD of alloy electrode, is of benefit to the self-discharge and high temperature performance of alloy electrodes. We think it correlates with the decrease of type and amount of secondary phase.  相似文献   

9.
Yuan Li  Jinhua Li 《Electrochimica acta》2007,52(19):5945-5949
Phase structure and electrochemical properties of the Ml1−xMgxNi2.80Co0.50Mn0.10Al0.10 (x = 0.08, 0.12, 0.20, 0.24, 0.28) (Ml = La-rich mixed lanthanide) alloys were studied. X-ray diffraction (XRD) analysis and Rietveld refinement show that the alloys consist mainly of LaNi5 and (La,Mg)Ni3 phase. Due to variation in phases of the alloys, the maximum discharge capacity, the high rate dischargeability (HRD), and the low temperature dischargeability increase first and then decrease. The maximum discharge capacity increases from 322 mAh g−1 (x = 0.08) to 375 mAh g−1 (x = 0.12), and then decreases to 351 mAh g−1 (x = 0.28) with increasing x. As the case of x = 0.20, HRD at 1200 mA g−1 and discharge capacity at 233 K reaches 41.7% and 256 mAh g−1, respectively. The cycling stability is improved by substituting La with Ml and B-site multi-alloying, and the capacity retention of Ml0.72Mg0.28Ni2.80Co0.50Mn0.10Al0.10 at the 200th cycle is 71%.  相似文献   

10.
Crystallographic and electrochemical characteristics of ball-milled Ti45Zr35Ni17Cu3 + xNi (x = 0, 5, 10, 15 and 20 mass%) composite powders have been investigated. The powders are composed of amorphous, I- and Ni-phases when x increases from 5 to 20. With increasing x, the amount of Ni-phase increases but the quasi-lattice constant decreases. The maximum discharge capacity first increases as x increases from 0 to 15 and then decreases when x increases further from 15 to 20. The high-rate dischargeability and cycling stability increase monotonically with increasing x. The improvement of the electrochemical characteristics is ascribed to the metallic nickel particles highly dispersed in the alloys, which improves the electrochemical kinetic properties and prevents the oxidation of the alloy electrodes, as well as to the mixed structure of amorphous and icosahedral quasicrystalline phases, which enhances the hydrogen diffusivity in the bulk of the alloy electrodes and efficiently inhibits the pulverization of the alloy particles.  相似文献   

11.
The structure and electrochemical kinetics properties of La0.90−xCexPr0.05Nd0.05Ni3.90Co0.40Mn0.40Al0.30 (x = 0.10, 0.20, 0.30, 0.40, 0.50) hydrogen storage alloys have been investigated. XRD shows that the alloys consist of LaNi5 phase with hexagonal CaCu5 structure. With increase in Ce content, the parameter a and cell volume decrease remarkably, but the parameter c increases slightly. The limiting current density IL and the hydrogen diffusion coefficient D increase, and the exchange current density I0 increases firstly from 201.4 mA/g (x = 0.10) to 277.9 mA/g (x = 0.30) and then decreases to 208.5 mA/g (x = 0.50). Meanwhile, high rate dischargeability (HRD) at 1440 mA/g increases from 44.1% (x = 0.10) to 59.9% (x = 0.30), and then decreases to 44.2% (x = 0.50). As the amount of Ce increases, the plateau pressure of P-C isotherms increases gradually, the capacity retention of the alloys increases firstly and then decreases, the alloy with x = 0.30 has the higher capacity retention and cycling stability, but the maximum discharge capacity of alloys decreases. Ce is a vital element in favor of kinetics properties of rare earth-based AB5-type alloys, and the substitution of La with Ce in suitable amount could improve the HRD by increasing kinetics.  相似文献   

12.
We report the electrical conductivity properties of solid-state synthesized perovskite-like La0.8Sr0.2Ga0.8Mg0.2O2.80 (LSGM) and LSGM-SrSn1−xFexO3 (x = 0.8; 0.9) composites. LSGM exhibits both bulk and grain-boundary contribution in the ac impedance plots. The grain-boundary conductivity (σgb) is slightly (≤half-order of magnitude) higher than that of the bulk oxide ion conductivity (σbulk). Powder XRD study reveals that no chemical reaction occurs between LSGM and SrSn1−xFexO3 (1:1 wt.%) at 1000 °C (48 h) and forms a single-phase perovskite-like compound at 1300 °C (48 h) in air, while in hydrogen atmosphere, at 800 °C for 48 h, a growth of LaSrGaO4 and LaSrGa3O7 impurity phases and formation of metallic Fe was observed. The LSGM-SrSn1−xFexO3 (x = 0.8; 0.9) composites show a single or part of semicircle in air at low-temperature regime. The electrical conductivity of the composites were found to be much higher compared to pure LSGM and lower about an order of magnitude than those of pure Sn-doped SrFeO3 perovskite.  相似文献   

13.
La(1−x)SrxFeO3 (x = 0.2,0.4) powders were prepared by a stearic acid combustion method, and their phase structure and electrochemical properties were investigated systematically. X-ray diffraction (XRD) analysis shows that La(1−x)SrxFeO3 perovskite-type oxides consist of single-phase orthorhombic structure (x = 0.2) and rhombohedral one (x = 0.4), respectively. The electrochemical test shows that the reaction at La(1−x)SrxFeO3 oxide electrodes are reversible. The discharge capacities of La(1−x)SrxFeO3 oxide electrodes increase as the temperature rises. With the increase of the temperature from 298 K to 333 K, their initial discharge capacity mounts up from 324.4 mA h g−1 to 543.0 mA h g−1 (when x = 0.2) and from 147.0 mA h g−1 to 501.5 mA h g−1 (when x = 0.4) at the current density of 31.25 mA g−1, respectively. After 20 charge-discharge cycles, they still remain perovskite-type structure. Being similar to the relationship between the discharge capacity and the temperature, the electrochemical kinetic analysis indicates that the exchange current density and proton diffusion coefficient of La(1−x)SrxFeO3 oxide electrodes increase with the increase of the temperature. Compared with La0.8Sr0.2FeO3, La0.6Sr0.4FeO3 electrode is a more promising candidate for electrochemical hydrogen storage because of its higher cycle capacity at various temperatures.  相似文献   

14.
The effect of Mn content on the crystal structure and electrochemical characteristics of La0.7Mg0.3Ni2.975−xCo0.525Mnx (x = 0, 0.1, 0.2, 0.3, 0.4) alloys has been studied systematically. The results of the Rietveld analyses show that all these alloys mainly consist of two phases: the La(La,Mg)2Ni9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCu5-type structure. The pressure-composition isotherms shows that the partial substitution of Mn for Ni results in lower desorption plateau pressure and steeper pressure plateau of the alloy electrodes. For a Mn content of x = 0.3, the electrochemical performances, including specific discharge capacity, high rate chargeability (HRC) and high rate dischargeability (HRD), of the alloy are preferable. Moreover, the data of the polarization resistance Rp and the exchange current density I0 of the alloy electrodes is consistent with the results of HRC and HRD. The hydrogen diffusion coefficient D increases with increasing Mn content, and thereafter increases the low temperature dischargeability (LTD) of the alloy electrodes.  相似文献   

15.
The solid solutions LiCoO2-LiNi1/2Mn1/2O2-Li2MnO3 with higher Mn content have been prepared by a spray drying method between 750 and 950 °C and their electrochemical performances have also been characterized. The effects of the Li content on the structure and electrochemical performance of the samples have been studied. It was found that their lattice parameters a, c and V increase with the increase in Ni content and the decrease in Co content. The solid solutions xLiCoO2-yLiNi1/2Mn1/2O2-(1−xy)Li2MnO3 with x = 0.18, 0.27 and y = 0.2 have the largest discharge capacity, which is more than 200 mAh/g in the voltages of 3.0-4.6 V. It is believed that the optimum Co content x in xLiCoO2-yLiNi1/2Mn1/2O2-(1−xy)Li2MnO3 is between 0.2 and 0.3 in the charge-discharge voltage range of 3.0-4.6 V. The solid solutions xLiCoO2-yLiNi1/2Mn1/2O2-(1−xy)Li2MnO3 with x = 0.18-0.36 and y = 0.2 have the excellent cycling performance and the capacity retention attains to almost 100% after 50 cycles. Moreover, it is found that the discharge capacity gradually increases with the increment of cycle number especially in the initial 10 cycles. XRD showed that the layered structure has been kept all the time in 20 cycles, which is perhaps the reason why the sample has the excellent cycling performance.  相似文献   

16.
The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7−xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)2Ni9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCu5-type structure. The abundance of the La(La, Mg)2Ni9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g−1 (x = 0.1) to 68.3 mAh g−1 (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g−1, the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7−xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.  相似文献   

17.
Mixtures of RhOx+Co3O4 have been electrochemically studied by cyclic voltammetry in acid solution as a function of composition. The electrodes were prepared by thermal decomposition at 400 °C of mixtures of nitrate precursors. Their electrochemical behavior shows substantial dependence on the electrode’s composition. The Co site controls the electrochemical behavior of the system in the 5-10 mol.% Rh composition range. A significant increase in the electrodes’ active area is observed for compositions corresponding to more than 10 mol.% RhOx in admixture with Co3O4. Above 10 mol.% Rh, the voltammetric curves become more similar to that for RhOx and then RhOx becomes able to stabilize the Co3O4 in the mixture. Electrodes of this kind have been found to perform as good materials in electrochemical capacitor applications, exhibiting specific capacitances of 500-800 F g−1 over to 20-60 mol.% RhOx composition range. The large specific capacitance exhibited by this system arises from a combination of the double-layer capacitance and the pseudocapacitance associated with Rh surface redox-type reactions.  相似文献   

18.
A series of CoxB (x = 1, 2, 3) alloys were prepared by arc melting, the phase structure of the alloys were characterized by X-ray diffraction (XRD). The electrochemical experimental results demonstrated that the CoxB (x = 1, 2, 3) series alloys showed excellent cycling stability, the capacity retention was 94.2%, 93.6% and 93.8% in the 100th cycle, respectively, as the cobalt content decreased. The CoB alloy electrode showed very good electrochemical reversibility in cyclic voltammetry (CV) curves, the oxidation and reduction peaks resembled the pure cobalt element powder electrode. The electrode mechanism was discussed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), using pure CoB alloy cast electrode. From the SEM, after first and second cycle, the surface became porous and pulverous; also, the oxidation state of Co changed through XPS, after second cycle, the Co of 0 oxidation state could not be found on the surface. Based on the experiment, a proper mechanism was proposed: on this condition, the discharge capacity may due to the Co(OH)2/Co reaction, which happened on the porous surface as the boron dissolved when the cycle increased.  相似文献   

19.
Electrodeposition of Ni1−xFex (x = 0.1-0.9) films was carried out from a chloride plating solution containing saccharin as an organic additive at a constant current density (5 mA/cm2) and a controlled pH of 2.5. X-ray diffraction studies revealed the existence of an fcc, or γ phase, in the range of 10-58 wt.% Fe, a mixed fcc/bcc phase in the range of 59-60 wt.% Fe, and a bcc, or α phase in the range of 64-90 wt.% Fe. The saturation magnetization, Bs, of electrodeposited Ni1−xFex alloys at the room temperature was found to increase with the increase of Fe-content and follows the Slater-Pauling curve, but deviates from as-cast bulk NiFe alloys. The coefficient of thermal expansion, CTE, of electrodeposited alloys at room temperature also deviates from as-cast bulk NiFe alloys. Annealing of α-Ni36Fe64 alloy results in a martensitic α → γ phase transformation, which takes place between 300 and 400 °C. It was demonstrated that thermal treatment above 400 °C was necessary to obtain magnetic and mechanical properties similar to those to conventional Invar alloy. Annealing of α-Ni36Fe64 alloy at 700 °C brings about a decrease of Bs from 1.75 to 0.45 T. By controlling the annealing conditions of α → γ martensitic transformation, it is possible to adjust the CTE of Ni36Fe64 alloy over the broad limits from 2.7 to 8.7 × 10−6/°C.  相似文献   

20.
Spherical Li[Ni0.4Co0.2Mn(0.4−x)Mgx]O2−yFy (x = 0, 0.04, y = 0, 0.08) with phase-pure and well-ordered layered structure have been synthesized by heat-treatment of spherical [Ni0.4Co0.2Mn0.4−xMgx]3O4 precursors with LiOH·H2O and LiF salts. The average particle size of the powders was about 10-15 μm and the size distribution was quite narrow due to the homogeneity of the metal carbonate, [Ni0.4Co0.2Mn(0.4−x)Mgx]CO3 (x = 0, 0.04) precursors. Although the Li[Ni0.4Co0.2Mn0.36Mg0.04]O1.92F0.08 delivered somewhat slightly lower initial discharge capacity, however, the capacity retention, interfacial resistance, and thermal stability were greatly enhanced comparing to the Li[Ni0.4Co0.2Mn0.4]O2 and Li[Ni0.4Co0.2Mn0.36Mg0.04]O2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号