首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Various ionic liquids (ILs) were prepared via metathesis reaction from two kinds of 1-(2-hydroxyethyl)-3-methyl imidazolium ([HEMIm]+) and N-(2-hydroxyethyl)-N-methyl morphorinium ([HEMMor]+) cations and three kinds of tetrafluoroborate ([BF4]), bis(trifluoromethanesulfonyl)imide ([TFSI]) and hexafluorophosphate ([PF6]) anions. All the [HEMIm]+ derivatives were in a liquid state at room temperature. In particular, [HEMIm][BF4] and [HEMIm][TFSI] showed no possible melting point from −150 °C to 200 °C by DSC analysis, and their high thermal stability until 380-400 °C was verified by TGA analysis. Also, their stable electrochemical property (electrochemical window of more than 6.0 V) and high ionic conductivity (0.002-0.004 S cm−1) further confirm that the suggested ILs are potential electrolytes for use in electrochemical devices. Simultaneously, the [HEMMor]+ derivatives have practical value in electrolyte applications because of their easy synthesis procedures, cheap morpholinium cation sources and possibilities of high Li+ mobility by oxygen group in the morpholinium cation. However, [HEMMor]+ derivatives showing high viscosity usually had lower ionic conductivities than [HEMIm]+ derivatives.  相似文献   

2.
In this study, we prepare a kind of solid polymer electrolyte (SPE) based on N-ethyl-N′-methyl imidazolium tetrafluoroborate (EMIBF4), LiBF4 and poly(vinylidene difluoride-co-hexafluoropropylene) [P(VdF-HFP)] copolymer. The resultant SPE displays high thermal stability above 300 °C and high room temperature ionic conductivity near to 10−3 S cm−1. Its electrochemical properties are improved with incorporation of a zwitterionic salt 1-(1-methyl-3-imidazolium)propane-3-sulfonate (MIm3S). When the SPE contains 1.0 wt% of the MIm3S, it has a high ionic conductivity of 1.57 × 10−3 S cm−1 at room temperature, the maximum lithium ions transference number of 0.36 and the minimum apparent activation energy for ions transportation of 30.9 kJ mol−1. The charge-discharge performance of a Li4Ti5O12/SPE/LiCoO2 cell indicates the potential application of the as-prepared SPE in lithium ion batteries.  相似文献   

3.
In this contribution we present a soft matter solid electrolyte which was obtained by inclusion of a polymer (polyacrylonitrile, PAN) in LiClO4/LiTFSI-succinonitrile (SN), a semi-solid organic plastic electrolyte. Addition of the polymer resulted in considerable enhancement in ionic conductivity as well as mechanical strength of LiX-SN (X = ClO4, TFSI) plastic electrolyte. Ionic conductivity of 92.5%-[1 M LiClO4-SN]:7.5%-PAN (PAN amount as per SN weight) composite at 25 °C recorded a remarkably high value of 7 × 10−3 Ω−1 cm−1, higher by few tens of order in magnitude compared to 1 M LiClO4-SN. Composite conductivity at sub-ambient temperature is also quite high. At −20 °C, the ionic conductivity of (100 − x)%-[1 M LiClO4-SN]:x%-PAN composites are in the range 3 × 10−5-4.5 × 10−4 Ω−1 cm−1, approximately one to two orders of magnitude higher with respect to 1 M LiClO4-SN electrolyte conductivity. Addition of PAN resulted in an increase of the Young's modulus (Y) from Y → 0 for LiClO4-SN to a maximum of 0.4 MPa for the composites. Microstructural studies based on X-ray diffraction, differential scanning calorimetry and Fourier transform infrared spectroscopy suggest that enhancement in composite ionic conductivity is a combined effect of decrease in crystallinity and enhanced trans conformer concentration.  相似文献   

4.
A gelatin-based electrolyte has been developed and characterized by impedance spectroscopy, X-ray diffraction, UV-vis-NIR spectroscopy and atomic force microscopy (AFM). The heat treatment temperature was found the key factor affecting its ionic conductivity that increases from 1.5 × 10−5 S/cm to 4.9 × 10−4 S/cm by heating from room temperature up to 80 °C. The temperature dependence of the ionic conductivity exhibits an Arrhenius behavior. EC-devices with the configuration K-glass/Nb2O5:Mo EC-layer/gelatin-based electrolyte/(CeO2)x(TiO2)1−x ion-storage (IS) layer/K-glass, have been assembled and characterized. They show a good long time cyclic stability, but the change of the optical density measured at 550 nm after 25 000 cycles was only 0.13.  相似文献   

5.
In this study, we synthesized a molecular hybrid conductor electrolyte using PWA ([H3PW12O40·nH2O]) and [1-butyl-3-methylimidazole][bis-(fluoromethanesulfonyl) amide] ([BMIM][TFSI]) ionic liquid. The [BMIM][TFSI] ionic liquid can interact with the strongly acidic PWA. The hybrids were hydrophilic, and included some water molecules in the structure of the hybrids. The water molecules remained up to 80 °C, contributing to improve conductivity under an anhydrous N2 atmosphere. The conductivity of PWA-[BMIM][TFSI] hybrid under anhydrous conditions increased from 10−4 S/cm to 0.04 S/cm at 60 °C. The conductivity of the hybrids at each temperature was higher than that of pure PWA and [BMIM][TFSI] under anhydrous condition. It can be due to the protonic carriers.  相似文献   

6.
Cyclic voltammetry, constant current charge/discharge, and electrochemical impedance spectroscopy have been applied to establish the electrochemical characteristics for electric double-layer capacitor (EDLC) consisting of the 1 M (C2H5)3CH3NBF4 electrolyte in acetonitrile and micro/mesoporous carbon electrodes prepared from Mo2C, noted as C(Mo2C). The N2 sorption (total BET specific surface area (SBET ≤ 1855 m2 g−1), micropore area (Smicro ≤ 1823 m2 g−1), total pore volume (Vtot ≤ 1.399 m3 g−1) and pore size distribution (average NLDFT pore width dNLDFT ≥ 0.89 nm) values obtained have been correlated with the electrochemical characteristics for EDLCs (region of ideal polarizability (ΔV = 3.0 V), characteristic time constant (τR = 1.05 s), gravimetric capacitance (Cm ≤ 143 F g−1)) dependent strongly on the C(Mo2C) synthesis temperature. High gravimetric energy (35 Wh kg−1) and gravimetric power (237 kW kg−1) values, normalised to the total active mass of both C(Mo2C) electrodes, synthesised at Tsynt = 800 °C, have been demonstrated at cell voltage 3.0 V and T = 20 °C.  相似文献   

7.
The influence of solvents on the property of poly (acrylic acid)-oligo-(ethylene glycol) polymer gel electrolyte and photovoltaic performance of quasi-solid-state dye-sensitized solar cells (DSSCs) were investigated. Solvents or mixed solvents with large donor number enhance the liquid electrolyte absorbency, which further influences the ionic conductivity of polymer gel electrolyte. A polymer gel electrolyte with ionic conductivity of 4.45 mS cm−1 was obtained by using poly (acrylic acid)-oligo-(ethylene glycol) as polymer matrix, and absorbing 30 vol.% N-methyl pyrrolidone and 70 vol.% γ-butyrolactone with 0.5 M NaI and 0.05 M I2. By using this polymer gel electrolyte coupling with 0.4 M pyridine additive, a quasi-solid-state dye-sensitized solar cell with conversion efficiency of 4.74% was obtained under irradiation of 100 mW cm−2 (AM 1.5).  相似文献   

8.
Edy Marwanta 《Polymer》2005,46(11):3795-3800
Polymer electrolytes with high ionic conductivity and good elasticity were prepared by mixing nitrile rubber (poly(acrylonitrile-co-butadiene) rubber; NBR) with ionic liquid, N-ethylimidazolium bis(trifluoromethanesulfonyl)imide (EImTFSI). The NBR/EImTFSI composites were obtained as homogeneous and transparent films when the ionic liquid content was less than 60 wt%. Raman spectroscopy suggested the interaction between nitrile group of NBR and TFSI anion. Sample with ionic liquid content of 50 wt% showed the ionic conductivity of 1.2×10−5 S cm−1 at 30 °C. Addition of lithium salt to this NBR/EImTFSI composite further enhanced the ionic conductivity to about 10−4 S cm−1 without spoiling mechanical properties. DSC studies showed two glass transition temperatures for composites indicating microphase separation.  相似文献   

9.
Asymmetrical dicationic ionic liquids based on the combination of imidazolium and aliphatic ammonium cations with TFSI anion, MICnN111-TFSI2, have been synthesized for the first time, wherein MI represents imidazolium cation, N111 represents trimethylammonium cation, and Cn represents spacer length. The physical and electrochemical properties of this family of ionic liquids were studied. 1-(3-Methylimidazolium-1-yl)ethane-(trimethylammonium) bi[bis(trifluoromethane-sulfonyl) imide] (MIC2N111-TFSI2) shows solid-solid transition characteristics. 1-(3-Methylimidazolium-1-yl)pentane-(trimethylammonium) bi[bis(trifluoromethan-esulfonyl)imide] (MIC5N111-TFSI2) has one of the lowest solid-liquid transformation temperatures among analogues, and belongs to the greatest thermal stable ionic liquids. Additionally, it has an order of conductivity of 10−1 ms cm−1, and electrochemical window of about 3.7 V at room temperature. To evaluate the potential of MIC5N111-TFSI2 as an additive of electrolyte for lithium secondary batteries, cells composed of LiMn2O4 cathode/1 M LiPF6 in EC:DMC (1:1, v/v) electrolytic solution containing 5 wt% of MIC5N111-TFSI2/lithium metal anode have been prepared. The charge-discharge cycling test reveals that unlike the cases of Li/LiMn2O4 cells employing a conventional electrolyte with a monocationic ionic liquid, such as 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EtMeImTFSI) as an additive, the performances of Li/LiMn2O4 cells do not drop with the addition of MIC5N111-TFSI2 at 1C rate, moreover, the cell exhibits better discharge capacity and cycle durability compared with the cell using the conventional electrolyte.  相似文献   

10.
An EC/DEC [40:60% (v/v)] solvent mixture has been added in various amounts to the ionic liquid (IL) hexyltrimethylammonium bis(trifluoromethylsulfonyl)imide (N1116-NTf2) in the presence of LiNTf2 (lithium bis(trifluoromethylsulfonyl)imide) as lithium salt for possible use as electrolytes in lithium-ion batteries. These electrolytes exhibit a larger thermal stability than the reference electrolyte EC/DEC [40:60] + LiNTf2 1 M when the percentage of the IL exceeds 30% (v/v). All studied electrolytes are glass forming ones with an ideal glass transition temperature of ca. −85 °C(±5 °C), which has been determined by application of the VTF theory to conductivity and viscosity measurements and confirmed by DSC (Tg = −90 ± 5 °C). An electrochemical window of about 5 V versus Li/Li+ was measured at a glassy carbon electrode. The cycling ability of the optimized electrolyte N1116-NTf2/EC:DEC (40/60% (v/v)) + 1 M LiNTf2 has been investigated at a titanate oxide (Li4Ti5O12) and a cobalt oxide (LixCoO2) electrodes. Cycling the positive and the negative electrodes was conducted successfully with a high capacity and without any significant fading.  相似文献   

11.
A new polymeric gel electrolyte system consisting of poly(ethylene oxide)-modified polymethacrylate (PEO-PMA) with organic ionic liquid dissolving magnesium salt, Mg[(CF3SO2)2N]2, has been developed. The ionic conductance and electrochemical properties of the gel films were investigated. The obtained gel film was self-standing, transparent and flexible with sufficient mechanical strength. Thermal analysis of the gel film showed that it is homogeneous and amorphous over a wide temperature range. The highest conductivity, ca. 3.5 mS cm−1 at 60 °C, was obtained for the polymeric gel containing 80 wt.% of the liquid component that consists of 80 mol% of EMITFSI (1-ethyl-3-methylimidazolium bis(trofluoromethylsulfonyl)imide) and 20 mol% of Mg[(CF3SO2)2N]2. The sort of the ionic liquid affected much on the ionic conductivity of the gel. The dc polarization of a Pt/polymeric gel electrolyte/Mg cell proved that the magnesium ion (Mg2+) can mobile in the present polymeric gel system.  相似文献   

12.
Ionic liquid-type polymer brushes having different hydrocarbon (HC) chain lengths between polymerizable group and imidazolium ring were synthesized. When the carbon number of HC chain was 6, the ionic liquid-type polymer brush exhibited the highest ionic conductivity of 1.37×10−4 S cm−1 at 30 °C, reflecting low Tg of −60 °C. Moreover, for the first time, we succeeded in obtaining transparent and flexible films without considerable decrease in the ionic conductivity as compared with that of corresponding monomers by using suitable cross-linkers. The most ion conductive (1.1×10−4 S cm−1 at 30 °C) film was obtained when tetra(ethylene glycol)diacrylate was used 0.5 mol% to ionic liquid monomer as the cross-linker. This film is one of excellent conductive films among single-ion conductive materials.  相似文献   

13.
Hu Cheng 《Electrochimica acta》2007,52(19):5789-5794
New gel polymer electrolytes containing 1-butyl-4-methylpyridinium bis(trifluoromethanesulfonyl)imide (BMPyTFSI) ionic liquid are prepared by solution casting method. Thermal and electrochemical properties have been determined for these gel polymer electrolytes. The addition of BMPyTFSI to the P(EO)20LiTFSI electrolyte results in an increase of the ionic conductivity, and at high BMPyTFSI concentration (BMPy+/Li+ = 1.0), the ionic conductivity reaches the value of 6.9 × 10−4 S/cm at 40 °C. The lithium ion transference numbers obtained from polarization measurements at 40 °C were found to decrease as the amount of BMPyTFSI increased. However, the lithium ionic conductivity increased with the content of BMPyTFSI. The electrochemical stability and interfacial stability for these gel polymer electrolytes were significantly improved due to the incorporation of BMPyTFSI.  相似文献   

14.
A gel polymer electrolyte based on poly(acrylonitrile-co-styrene) as polymer matrix and N-methyl pyridine iodide salt as I source was prepared. Controlling the concentration of polymer matrix of poly(acrylonitrile-co-styrene) at 17.5 wt.%, mixing the binary organic solvents mixture ethylene carbonate and propylene carbonate with 6:4 (w/w), and the concentration of N-methyl pyridine iodide and iodine with 0.5 and 0.05 M, respectively, the gel polymer electrolyte attains the maximum ionic conductivity (at 30 °C) of 4.63 mS cm−1. Based on the gel polymer electrolyte, a quasi-solid state dye-sensitized solar cell was fabricated and its overall energy conversion efficiency of light-to-electricity of 3.10% was achieved under irradiation of 100 mW cm−2.  相似文献   

15.
A polyterthiophene (PTTh)/multi-walled carbon nanotube (CNT) composite was synthesised by in situ chemical polymerisation and used as an active cathode material in lithium cells assembled with an ionic liquid (IL) or conventional liquid electrolyte, LiBF4/EC-DMC-DEC. The IL electrolyte consisted of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) containing LiBF4 and a small amount of vinylene carbonate (VC). The lithium cells were characterised by cyclic voltammetry (CV) and galvanostatic charge/discharge cycling. The specific capacity of the cells with IL and conventional liquid electrolytes after the 1st cycle was 50 and 47 mAh g−1 (based on PTTh weight), respectively at the C/5 rate. The capacity retention after the 100th cycle was 78% and 53%, respectively. The lithium cell assembled with a PTTh/CNT composite cathode and a non-flammable IL electrolyte exhibited a mean discharge voltage of 3.8 V vs Li+/Li and is a promising candidate for high-voltage power sources with enhanced safety.  相似文献   

16.
A new proton conducting membrane containing room temperature ionic liquid: 2,3-dimethyl-1-octylimidazolium trifluoromethanesulfonylimide (DMOImTFSI) and polyvinylidenefluoride-co-hexafluoropropylene (PVdF-HFP) has been developed in the present work. The addition of bis(trifluoromethanesulphonyl)imide (HN(CF3SO2)2) to this membrane results in an increase in conductivity by one order of magnitude at 25 °C. The membrane shows a conductivity of 2.74 × 10−3 S/cm at 130 °C along with good mechanical stability. The membrane was tested in a commercial fuel cell test station at 100 °C with dry hydrogen and oxygen gas reactants using Pt/C electrodes. The membrane containing the ionic liquid has been found to be electroactive for hydrogen oxidation and oxygen reduction at the platinum electrode and can be developed for use in proton exchange membrane fuel cell (PEMFC) under non-humid conditions at elevated temperatures.  相似文献   

17.
Lin Ye  Feng Wu  Ying Bai  Zeng-guo Feng 《Polymer》2007,48(6):1550-1556
A kind of novel hyperbranched copolyethers intending for the solid polymer electrolyte was synthesized via the cationic ring-opening polymerization of 3-{2-[2-(2-methoxyethoxy)ethoxy]-ethoxy}methyl-3′-methyloxetane (MEMO) and 3-hydroxymethyl-3′-methyloxetane (HMO) in the presence of BF3·Et2O as an initiator. Herein HMO was employed to create the hyperbranched structure, whereas MEMO was responsible for the ionic transportation of the resulting copolymers. The terminal structure featured by a cyclic fragment was definitely detected by MALDI-TOF measurement. The degree of branching of the copolymers was calculated by means of 13C NMR spectra. The DSC analysis implied that they hold the excellent segment motion performance and perfectly amorphous state beneficial for the ionic transportation. The ionic conductivity measurements showed that the sample HMO 30 reaches a maximum ionic conductivity of 8.0 × 10−5 S/cm at 30 °C and 7.4 × 10−4 S/cm at 80 °C, respectively, after doping with lithium salt LiTFSI. Moreover, the TGA assay exhibited that these hyperbranched copolymers possess the higher thermostability as compared with their liquid counterparts.  相似文献   

18.
Organic-inorganic hybrid electrolytes based on di-ureasil backbone structures by reacting poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (ED2000) with 3-(triethoxysilyl)propyl isocyanate (ICPTES), followed by co-condensation with methoxy(polyethylenoxy)propyl trimethoxysilane (MPEOP) in the presence of LiClO4 were prepared and characterized by a variety of techniques. The hybrid electrolytes showed good resistance to crystallization and excellent conductivity for use in lithium-ion batteries, as determined by differential scanning calorimetry (DSC) and impedance measurements, respectively. The temperature dependence of the ionic conductivity exhibited a VTF (Vogel-Tamman-Fulcher)-like behavior for all the compositions studied and a maximum ionic conductivity value of 6.9 × 10−5 S cm−1, a relatively high value for solid polymer electrolytes, was achieved at 30 °C for the hybrid electrolyte with a [O]/[Li] ratio of 16. A microscopic view of the dynamic behavior of the polymer chains (13C) and the ionic species (7Li) was provided by the 1H and 7Li line widths measured from 2D 1H-13C WISE (Wideline Separation) and variable temperature 7Li static NMR, respectively, to elucidate the influence of the mobility of the polymer chains and the charge carriers on the observed ionic conductivity. The present salt-free hybrid electrolyte after plasticization with 1 M LiClO4 in EC/PC solution exhibited a swelling ratio of 275% and reached an ionic conductivity value up to 8.3 × 10−3 S cm−1 at 30 °C, which make it a good candidate for the further development of advanced rechargeable lithium-ion batteries.  相似文献   

19.
Polymer electrolytes can be used favorably in photo-electrochemical solar cells. A possible electrolyte for this purpose is a polyacrylonitrile-MgI2 complex with plasticizers such as ethylene carbonate and propylene carbonate. The best ionic conductivity was obtained for samples containing 60 wt% of MgI2 salt with respect to the weight of polyacrylonitrile, for example, at 30 °C the conductivity is 1.9 × 10−3 S cm−1. The ionic contribution to the conductivity is dominant as shown by dc polarization tests. Furthermore, the glass transition temperature showed a minimum, −103.0 °C, for the sample with the highest conductivity indicating the importance of polymer chain flexibility for the conduction process. Measurements on a fabricated solar cell with this electrolyte exhibited an overall energy conversion efficiency of 0.84%. The short circuit current density, open circuit voltage and fill factor of the cell were 2.04 mA cm−2, 692 mV and 59.3%, respectively.  相似文献   

20.
A long cycle-life, high-voltage supercapacitor featuring an activated carbon//poly(3-methylthiophene) hybrid configuration with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid, a solvent-free green electrolyte, was developed. The cyclability of a laboratory scale cell with electrode mass loading sized for practical uses was tested at 60 °C over 16,000 galvanostatic charge-discharge cycles at 10 mA cm−2 in the 1.5 and 3.6 V voltage range. The reported average and maximum specific energy and power, specific capacitance and capacity, equivalent series resistance and coulombic efficiency over cycling demonstrate the long-term viability of this ionic liquid as green electrolyte for high-voltage hybrid supercapacitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号