首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An ionic liquid (IL, 1-(methylcarboxylic acid)-3-octylimidazolium-bis (trifluoromethylsulfonyl)imide) was covalently coupled onto a boron-doped diamond (BDD) surface through an esterification reaction. The resulting surface was characterized by X-ray photoelectron spectroscopy, water contact angle and electrochemical measurements. Selective electron transfer towards positively and negatively charged redox species was recorded. While the presence of Fe(CN)64− could be detected on the IL-modified BDD interface, no surface-immobilized Ru(NH3)63+ was recorded. The IL-modified BDD electrode showed in addition changes in surface wettability when immersed into aqueous solution containing different anions.  相似文献   

2.
In this work, we studied interfacial proton transfer of the self-assembled monolayer (SAM) of 1-(12-mercaptododecyl)imidazole on a gold electrode by faradaic impedance titration method with Fe(CN)63− as an anionic redox probe molecule. The surface pK1/2 was found to be 7.3, which was nearly the same as that of 1-alkylimidazole in solution. We also investigated the electrochemical properties of the SAM-modified electrode by cyclic voltammetry. Cyclic voltammetry was performed (1) in the solution containing Fe(CN)63− with repeated alternation of pH values to investigate the electrostatic interaction of the protonated or deprotonated imidazole with Fe(CN)63− and (2) in the acidic or basic electrolyte containing Ru(NH3)63+ as a cationic redox probe to verify the effect of the polarity of a redox probe. We observed the reversible adsorption/desorption of Fe(CN)63− and concluded that the adsorbed Fe(CN)63− catalyzed the electron transfer of both Fe(CN)63− itself and cationic Ru(NH3)63+.  相似文献   

3.
The electrochemical behavior of potassium ferrocyanide [K4Fe(CN)6] at Pt/ionic liquid (IL) microemulsion interfaces was investigated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). H2O/TX-100/bmimPF6 was used to prepare three IL microemulsions: water in 1-butyl-3-methylimidazolium hexafluorophosphate (bmimPF6) (W/IL), bicontinuous (WIL) and bmimPF6 in water (IL/W). The results show that the IL microemulsion systems have relatively narrower potential windows compared with the pure IL system. The redox potential gap is about 100 mV in the pure water and the three IL microemulsions. The redox potentials of K4Fe(CN)6/K3Fe(CN)6 and the redox peak currents decrease in the order pure water, IL/W, WIL, W/IL. Furthermore, the peak currents increase linearly with the square root of the scan rate, while the diffusion coefficient increased in the order W/IL, WIL, IL/W. The Nyquist plots obtained in the WIL and IL/W systems show capacitive resistance arcs at high frequencies and 45° straight lines at low frequencies, implying that the electrochemical reactions are controlled by charge transfer and diffusion steps. For the W/IL system there is only a 45° straight line in the Nyquist plot, indicating that diffusion is the controlling step at all frequencies.  相似文献   

4.
The surface of an aluminum (Al) electrode was modified with a thin film of nickel hexacyanoruthenate (NiHCR) as a novel electrode material. The modification procedure of Al surface, includes two consecutive procedures: (i) the electroless deposition of metallic nickel on the Al electrode surface from NiCl2 solution, and (ii) the chemical transformation of deposited nickel to nickel hexacyanoruthenate films in solution of 20 mM K3[Ru(CN)6] + 0.5 M KNO3. Cyclic voltammogram of the modified Al electrode showed a well-defined redox reaction due to [NiIIRuIII/II(CN)6]1−/2− system. The effects of different supporting electrolytes and solution pH were studied on the electrochemical characteristics of the modified electrode. The diffusion coefficients of K+ and Na+ cations in the film (D), the transfer coefficient (α), and the charge transfer rate constant at the modifying film/electrode interface (ks), were calculated in the presence of both K+ and Na+ cations. The stability of the modified electrode was investigated under various experimental conditions.  相似文献   

5.
Electrogeneration of soluble Prussian Blue (PB) during the oxidation-reduction of the Fe(CN)63−/Fe(CN)64− system has been detected using bidimensional spectroelectrochemistry (BSEC). This new technique allows us to obtain simultaneously two different spectroscopic signals together with an electrochemical signal, each one containing different information. Starting from pure Fe(CN)64− solutions, some experimental conditions under which soluble PB appears, have been analysed. Fe(CN)64−/supporting electrolyte concentration ratio and potential scan rate have been found as the most influential factors. All experiments show clearly the generation of soluble PB but in no case the insoluble form has been detected. From the results, PB generation can be explained as a surface chemical process coupled with the electron transfer reaction.  相似文献   

6.
K4Fe(CN)6 was used to improve the microstructure and properties of copper deposits obtained from hypophosphite baths. In electroless copper plating solutions using hypophosphite as the reducing agent, nickel ions (0.0038 M with Ni2+/Cu2+ mole ratio 0.12) was used to catalyze hypophosphite oxidation. However, the color of the copper deposits was dark or brown and its resistivity was much higher than that obtained in formaldehyde baths. The effects of K4Fe(CN)6 on the deposit composition, resistivity, structure, morphology and the electrochemical reactions of hypophosphite (oxidation) and cupric ion (reduction) have been investigated. The deposition rate and the resistivity of the copper deposits decreased significantly with the addition of K4Fe(CN)6 to the plating solution and the color of the deposits changed from dark-brown to copper-bright with improved uniformity. The nickel and phosphorus content in the deposits also decreased slightly with the use of K4Fe(CN)6. Smaller crystallite size and higher (111) plane orientation were obtained by addition of K4Fe(CN)6. The electrochemical current–voltage results show that K4Fe(CN)6 inhibited the catalytic oxidation of hypophosphite at active nickel sites and reduced the reduction reaction of cupric ions on the deposit surface by adsorption on the electrode. This results in lower deposition rate and a decrease in the mole ratio of NaH2PO2/CuSO4 consumed during plating.  相似文献   

7.
Dendritic molecules contain multifunctional groups that can be used to efficiently control the properties of an electrode surface. We are developing strategies to generate a highly functionalized surface using multifunctional and rigid dendrons immobilized onto different substrates. In the present work, we explore the immobilization of a dendritic molecule: 3,5-bis(3,5-dinitrobenzoylamino) benzoic acid (D-NO2) onto carbon surfaces showing a simple and rapid way to produce conductive surfaces with electroactive chemical functions. The immobilized D-NO2 layer has been characterized using atomic force microscopy and cyclic voltammetry. D-NO2 adsorbs onto carbon surfaces spontaneously by dipping the electrode in dendron solutions. Reduction of this layer generates the hydroxylamine product. The resulting redox-active layer exhibits a well-behaved redox response for the adsorbed nitroso/hydroxylamine couple. The film permeability of the derivatized surface has been analyzed employing the electrochemical response of redox probes: Ru(NH3)63+/Ru(NH3)62+ and Fe(CN)63−/Fe(CN)64−. Electrocatalytic oxidation of nicotinamide adenine dinucleotide onto a modified carbon surface was also observed.  相似文献   

8.
Charge transfer on boron doped diamond (BDD) electrodes was studied by cyclic voltammetry and electrochemical impedance spectroscopy. The diamond films of 5 μm thickness and boron content between 200 ppm and 3000 ppm were prepared by the hot filament CVD technique on niobium substrate and mounted in a Teflon holder as rotating disk electrodes. The electrochemical measurements were carried out in aqueous electrolyte solutions of 0.5 M Na2 SO 4 + 5 mM K3[Fe(CN)6]/K4[Fe(CN)6]. Significant deviation in the redox behaviour of BDD and active Pt electrodes was indicated by a shift of the peak potentials in the cyclic voltammograms with increasing sweep rate and lower limiting diffusion current densities under rotating disk conditions. In the impedance spectra an additional capacitive element appeared at high frequencies. The potential and rotation dependence of the impedance spectra can be described quantitatively in terms of a model based on diffusion controlled charge transfer on partially blocked electrode surfaces. Direct evidence for the non-homogeneous current distribution on the diamond surface was obtained by SECM measurements.  相似文献   

9.
A glassy carbon (GC) electrode surface was modified with a cadmium pentacyanonitrosylferrate (CdPCNF) film as a novel electrode material. The modification procedure of the GC surface includes two consecutive procedures: (i) the electrodeposition of metallic cadmium on the GC electrode surface from a CdCl2 solution and (ii) the chemical transformation of the deposited cadmium to the CdPCNF films in 0.05 M Na2[Fe(CN)5NO] + 0.5 M KNO3 solution. The modified GC electrode showed a well-defined redox couple due to [CdIIFeIII/II(CN)5NO]0/−1 system. The effects of supporting electrolytes and solution pH were studied on the electrochemical behavior of the modified electrode. The diffusion coefficients of alkali-metal cations in the film (D), the transfer coefficient (α) and the charge transfer rate constant at the modifying film | electrode interface (ks), were calculated in the presence of various alkali-metal cations. The stability of the modified electrode was investigated under various experimental conditions.  相似文献   

10.
The potential application of Al-incorporated mesoporous SiO2 (denoted as Al-MCM-41) in electrochemistry as a novel electrode material was investigated. The peak currents of K3[Fe(CN)6] remarkably increase and the peak potential separation obviously decreases at the mesoporous Al-MCM-41 modified carbon paste electrode (CPE). These phenomena suggest that the mesoporous Al-MCM-41 modified CPE possesses larger electrode area and electron transfer rate constant. Furthermore, the electrochemical behavior of epinephrine (EP) was investigated in different supporting electrolytes such as 0.01 mol L−1 HClO4 and pH 7.0 phosphate buffer. It is found that the mesoporous Al-MCM-41 modified CPE exhibits catalytic ability to the oxidation of EP due to remarkable peak current enhancement and negative shift of peak potential. The electrochemical oxidation mechanism was also discussed. Finally, a novel electrochemical method was proposed for the determination of EP, which used to determine EP in urine samples.  相似文献   

11.
Graphite electrodes chemically modified with Prussian Blue (G/PB) were obtained by spreading, on the electrode surface, appropriate volumes of 100 mM K3[Fe(CN)6] and 100 mM FeCl3 solutions, both containing 10 mM HCl. In order to improve the electrochemical response stability, the potential of G/PB electrodes was cycled (in the domain where PB exhibits electrochemical activity) in 0.1 M KCl solution (G/PB-K), as well as in 2 mM RhCl3 solution, containing 0.05 M KCl (G/PB-Rh). Compared with G/PB-K, the G/PB-Rh modified electrodes showed: (i) higher relative stability of the PB electrochemical response; (ii) better analytical parameters for H2O2 amperometric detection; (iii) slightly lower rate constant corresponding to the second order electrocatalytic reaction for H2O2 amperometric detection; (iv) an electrocatalytic activity not affected by the H2O2 concentration.  相似文献   

12.
Reaction of [Ru(bpym)3]2+ (bpym = 2,2′-bipyridmidine) with hexacyanoruthenate under forcing conditions affords a mixture of the trinuclear species [(bpym)Ru{(µ-bpym)Ru(CN)4}2]2?, [1]2?, and the tetranuclear species [Ru{(µ-bpym)Ru(CN)4}3]4?, [2]4?, in which two or three (respectively) of the peripheral vacant bpym binding sites of [Ru(bpym)3]2+ are occupied by {Ru(CN)4}2? fragments. Thus, [1]2? and [2]4? have eight and twelve externally-directed cyanide groups respectively for use in forming high connectivity coordination networks. The crystal structure of HK[1]·2MeOH·6.5H2O reveals a one-dimensional ladder structure in which [1]2? anions are connected by (i) cyanide/K+ and (ii) bpym/K+ coordination interactions.  相似文献   

13.
The effect of cyanoferrate monomers on the metal coordination polymerization of Fe3+ and [Fe(CN)5L]3?, where L = CN, NH3, pyrazine (Pz), pyridine (Py) and 4-(dimethylamino)-pyridine (DMAP), for the synthesis of Prussian blue (PB) polymers was investigated. The polymerizations were performed in water at ambient temperature in the absence of templates and/or surfactants. The morphology and crystallinity of the resulting polymers are influenced by the nature of the ligands L associated with the monomers. When L = CN or NH3, crystalline polymers with irregular structures were produced. The polymerization employing [Fe(CN)5L]3? with L = Pz, Py and DMAP led to amorphous polymers with a tendency to form individual nanoparticles depending on the choice of L. Notably, in the case of [Fe(CN)5DMAP]3?, amorphous PB nanocubes with a regular size distribution were produced. Based on this study, the binding forces of L to Fe(II)(CN)5 is highlighted as an important parameter for PB metal coordination polymer nanostructure control and design.  相似文献   

14.
A simple and sensitive DNA impedance sensor was prepared for the detection of chronic lymphocytic leukemia. The DNA electrochemical biosensor is worked based on the electrochemical impedance spectroscopic (EIS) detection of the sequence-specific DNA related to chronic lymphocytic leukemia. The ssDNA probe was immobilized on the surface of the gold nanoparticles. Compared to the bare gold electrode, the gold nanoparticles-modified electrode could improve the density of the probe DNA attachment and hence the sensitivity of the DNA sensor greatly. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy were performed in a solution containing 1.0 mmol L−1 K3[Fe(CN)6]/K4[Fe(CN)6] and 50 mmol L−1 phosphate buffer saline pH 6.87 plus 50 mmol L−1 KCl. In the CV studied, the potential was cycled from 0.0 to +0.65 V with a scan rate of 50 mV s−1. Using EIS, the difference of the electron transfer resistance (ΔRet) was linear with the logarithm of the complementary oligonucleotides sequence concentrations in the range of 7.0 × 10−12–2.0 × 10−7 mol L−1, with a detection limit of 1.0 × 10−12 mol L−1. In addition, the DNA sensor showed a good reproducibility and stability during repeated regeneration and hybridization cycles.  相似文献   

15.
Scanning electrochemical microscopy (SECM) is employed to investigate the effect of solution viscosity on the rate constants of electron transfer (ET) reaction between potassium ferricyanide in water and 7,7,8,8-tetracyanoquinodimethane (TCNQ) in 1,2-dichloroethane. Either tetrabutylammonium (TBA+) or ClO4 is chosen as the common ion in both phases to control the interfacial potential drop. The rate constant of heterogeneous ET reaction between TCNQ and ferrocyanide produced in-situ, k12, is evaluated by SECM and is inversely proportional to the viscosity of the aqueous solution and directly proportional to the diffusion coefficient of K4Fe(CN)6 in water when the concentration of TCNQ in the DCE phase is in excess. The k12 dependence on viscosity is explained in terms of the longitudinal relaxation time of the solution. The rate constant of the heterogeneous ET reaction between TCNQ and ferricyanide, k21, is also obtained by SECM and these results cannot be explained by the same manner.  相似文献   

16.
Reversible charge transfer on boron doped diamond (BDD) electrodes was studied using cyclic voltammetry and electrochemical impedance spectroscopy. Polycrystalline diamond films of 5 μm thickness with 200 and 3000 ppm boron content were prepared by chemical vapour deposition on niobium substrate. The samples were mounted in a Teflon holder and used as rotating disk electrodes (RDE) with rotation frequencies between 0 and 4000 rpm. The electrochemical measurements were carried out in aqueous electrolyte solutions of 0.5 M Na2SO4 + 5 mM K3[Fe(CN)6]/K4[Fe(CN)6] and 0.1 M KCl + 5 mM [Ru(NH3)6]Cl2/[Ru(NH3)6]Cl3. The electrochemical redox behaviour of the BDD electrodes was found to differ significantly from that of an active Pt electrode. The deviations are indicated by a large peak potential difference and a shift of the peak potentials in cyclic voltammograms with increasing sweep rate. At rotating electrodes lower limiting current densities are found and the impedance diagrams exhibit an additional capacitive impedance element at high frequencies. The results are described quantitatively by an impedance model which is based on partial blocking of the diamond surface.  相似文献   

17.
Easwaramoorthi Ramasamy 《Carbon》2010,48(13):3715-22602
Ferrocene-derivatized large pore size mesocellular carbon foam (Fe-MCF-C) has been synthesized using divinylbenzene as a carbon source and mesocellular silica foam as a hard template. Cyclic voltammetric studies demonstrate a relatively faster electron transfer rate of Fe-MCF-C in K3Fe(CN)6/1 M KNO3 solution, as compared with pristine mesocellular carbon foam (MCF-C). Such an enhanced electrochemical property is beneficial for improving the cathodic reduction of tri-iodide in dye-sensitized solar cells (DSSCs). Under 1 sun illumination (100 mW cm−2, AM 1.5G), Fe-MCF-C counter electrode based DSSC shows an energy conversion efficiency of 7.89%, which is 12% higher than that of solar cell based on pristine MCF-C counter electrode.  相似文献   

18.
The surface of two natural smectite-type clay samples was chemically modified by covalent grafting of amine groups, by reaction with γ-aminopropyltriethoxysilane, which were easily protonated in HCl medium. Multisweep cyclic voltammograms of clay-film modified glassy carbon electrodes made of either the raw clays or the propylammonium-functionalized samples exposed to Ru(NH3)63+ or Fe(CN)63− electroactive probes were obtained. The results indicated a permselective behavior of these clay and organoclay-films based on either favorable or unfavorable electrostatic interactions. The cation-exchanging raw clay film modified electrodes exhibited accumulation properties for Ru(NH3)63+ species while rejecting Fe(CN)63−, whereas the anion-exchanging organoclay coatings acted as a barrier against Ru(NH3)63+ while increasing dramatically the concentration of Fe(CN)63− species at the electrode surface. Strong binding of the probe to the organoclays resulted in a potential shift of ca. 0.1 V of the voltammetric signals characteristic of the Fe(CN)63−/4− couple in the anodic direction. Their good preconcentration efficiency at low analyte concentration highlighted their interest for electroanalytical applications.  相似文献   

19.
N. Gu  D. Wei  L. Niu  A. Ivaska 《Electrochimica acta》2006,51(27):6038-6044
Multilayers of anionic phosphotungstic acid (PTA) clusters and positively charged protonated poly(allylamine hydrochloride) (PAH) were assembled by layer-by-layer self-assembled method on Au electrode modified by 3-mercaptopropionic acid (3-MPA). The effect of the charge of the surface of the multilayer assembly on the kinetics of the charge transfer reaction was studied by using the redox probes [Fe(CN)6]3−/4− and [Ru(NH3)6]2+/3+. The cyclic voltammetry experiments showed that the peak currents and peak-to-peak potential differences changed after assembling different layers on the electrode surface indicating that the charge of the surface has a significant effect on the kinetics of the studied charge transfer reactions. These reactions were studied in more detail by electrochemical impedance spectroscopy. When [Fe(CN)6]3−/4− was used as the redox label, multilayers that terminated with negatively charged PTA showed a high charge transfer resistance but multilayers that terminated with positively charged PAH showed lower charge transfer resistance. With [Ru(NH3)6]2+/3+ as the redox label, the charge transfer resistance at multilayers that terminated with positively charged PAH was much higher than at the multilayer terminated by the negatively charged PTA. The charge transfer resistances also increased with the addition of number of layers indicating that the entire thickness of the multilayer assembly has also an effect on the kinetics of the studied charge transfer reactions and not only the electrostatic attraction or repulsion between the surface and the redox probes. The ohmic resistance of the multilayer assembly increased non-linearly with the number of layers. Assembling a layer of PAH increased the resistance more than assembling a layer of PTA.  相似文献   

20.
Chi-Lin Li 《Electrochimica acta》2008,53(12):4293-4301
Nano-sized CuWO4 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrode with both LiClO4 liquid electrolyte and LiPON solid electrolyte in rechargeable lithium batteries. An initial discharge capacity of 192 and 210 mAh/g is obtainable for CuWO4 film electrode with and without coated LiPON in liquid electrolyte, respectively. An all-solid-state cell with Li/LiPON/CuWO4 layers shows a high-volume rate capacity of 145 μAh/cm2 μm in first discharge, and overcomes the unfavorable electrochemical degradation observed in liquid electrolyte system. A two-step reactive mechanism is investigated by both transmission electron microscopy and selected area electron diffraction techniques. Apart from the extrusion and injection of Cu2+/Cu0, additional capacity can be achieved by the reversible reactivity of (WO4)2− framework. The chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry. Nano-CuWO4 thin film is expected to be a promising positive electrode material for high-performance rechargeable thin-film lithium batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号