首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report a murine leukemia cell variant (L1210/DDP), selected for cisplatin (DDP) resistance, to be cross-resistant to methotrexate (MTX). Cross-resistance of L1210 cells to DDP and MTX has been observed by others, and has also been recorded in P388 murine leukemia and SSC-25 human squamous carcinoma cells. We demonstrated that MTX resistance is not due to dihydrofolate reductase (DHFR) gene amplification, increased DHFR enzyme activity or decreased MTX binding to the target enzyme. Of the mechanisms commonly proposed for MTX resistance, only differences in transport were observed when comparing sensitive (L1210/0) and resistant (L1210/DDP) cells. Our results suggest that MTX resistance in L1210/DDP cells is due to altered methotrexate uptake.  相似文献   

2.
In the present work, we analyzed the variations in the expression and trafficking of cathepsin D (CD), a lysosomal endopeptidase, associated with the enterocytic differentiation of the human colon carcinoma HT-29 cell line. In spite of the fact that the abundance of CD mRNA was severalfold higher in undifferentiated HT-29 cells than in their enterocyte-like differentiated counterparts, the intracellular levels of CD activity and protein were found to be much higher in the latter. The kinetic of transport of newly synthesized proCD was different in the two cell populations: (a) full conversion of proCD into the lysosomal mature form required more than 24 h in differentiated cells, whereas it was almost complete within 8 h in undifferentiated HT-29 cells; and (b) the extracellular release of proCD was shown to occur more rapidly and to a higher degree in undifferentiated than in differentiated cells. Most of the secreted proCD contained phosphomannoses. Secretion of beta-hexosaminidase activity doubled, whereas that of CD activity was unchanged, upon vacuolar alkalinization with ammonium chloride or chloroquine. Inhibition of the lysosomal-autophagic degradative pathway resulted in the accumulation of proCD molecules in undifferentiated HT-29 cells. Altogether these data suggest that: (a) the expression and the posttranslational fate of CD in HT-29 colon cancer cells are largely affected by the state of their enterocytic differentiation; and (b) in this cell line the acid-dependent mannose 6-phosphate receptor pathway is, at best, little involved in the trafficking of CD.  相似文献   

3.
Intestinal calcium absorption has been shown to include two processes, a saturable transcellular movement and a non-saturable paracellular pathway. The potential utility of cell monolayers for studying transepithelial intestinal calcium transport has already been demonstrated; however, simultaneous evaluation of the contribution of the saturable transcellular and of the non-saturable paracellular processes to the total transepithelial transport has not yet been attempted. The aim of this study was to investigate the contribution both of transcellular and paracellular transport processes to the total transepithelial calcium transport in two cell culture monolayers. Caco-2 cells and a clone derived from HT-29 cells (HT29-Cl.19A), two cell lines derived from colon adenocarcinomas which are known to be able to exhibit typical enterocytic differentiation, were used. Cell monolayers were grown on a permeable support and used after 15 days of culture when these cells express enterocytic differentiation and high transepithelial resistance. Isotopic transport rate measurements were performed in the absence of a chemical gradient. The paracellular route was evaluated using [3H]mannitol. Calcium and [3H]mannitol transport rates across cell monolayers were not significantly different. Augmentation of calcium uptake by 200 mM sorbitol did not significantly increase calcium or mannitol transepithelial transport; however, calcium accumulation in the cells was increased by about 200%. Modulation of the monolayer permeability by addition of 10 nM vasoactive intestinal polypeptide (VIP) or 0.5 mM carbachol treatment, which respectively increased and decreased the transepithelial resistance, consequently modified calcium and mannitol transport in a parallel manner. Our results show that Caco-2 and HT29-Cl.19A cell monolayers are good models for studying the calcium paracellular transport pathway.  相似文献   

4.
5.
Expression of certain variants of dihydrofolate reductase (DHFR) in mammalian cells protects them from methotrexate. Retroviral transfer of the gene for such a variant DHFR into hematopoietic cells might permit selection of modified cells in vivo by antifolate administration or alleviate antifolate-induced myelosuppression in patients receiving antifolate therapy. We examined protection of cells of the human lymphoblastoid line, CCRF-CEM, transduced with variants of mouse DHFR. In transduced cells selected with G418 but not with antifolate, the variant that had arginine substituted for leucine 22 did not protect against either methotrexate or trimetrexate; however, four other variants did offer protection, with the best having leucine 22 changed to tyrosine. Polyclonal cultures transduced with the different variants express DHFR at about the same level, but clones within each polyclonal population differ in DHFR expression levels and in resistance. These differences in expression were shown to reflect different integration sites for proviral DNA. Exposure to trimetrexate selects highly resistant clones, with high expression due to both high copy number and integration sites that are favorable for expression. Differences in the resistance of cultures expressing different variants at the same level are due to differences in the catalytic activity of the expressed DHFR, its affinity for antifolates, and its stability.  相似文献   

6.
Circular and linear amplicons were analyzed in detail in Leishmania tropica cells resistant to methotrexate (MTX). Both types of elements presented sequences related to the H locus and coexisted in resistant cells. The linear amplicons appeared first during the selection process (at 10 microM MTX) and varied with regard to size and structure in cells exposed to increasing concentrations of drug. The circular element was evident at higher concentrations (50 microMs) but was the major amplified DNA in cells resistant to 1000 microM MTX while the level of amplification of the linear elements remained low. The extrachromosomal DNAs were unstable in the absence of drug and their disappearance coincided with an increase in sensitivity to MTX. Mapping of the minichromosomes and the circular element showed that they were all constituted by inverted duplications. The circular amplicon contained an inverted repeat derived from the H locus that encompassed the pteridine reductase gene (PTR1) responsible for MTX resistance. The amplified segment in the linear amplicons was longer and included the pgpB and pgpC genes that encode P-glycoproteins of unknown function previously characterized in different Leishmania species.  相似文献   

7.
The Galpha-interacting protein (GAIP) is known to interact with the Galphai3 protein. It has been suggested that, depending on its expression, GAIP can be a regulator of trimeric Gi protein signaling pathways. In the present study we show that the GAIP mRNA content declines during the enterocytic differentiation of two cell lines derived from human colon adenocarcinomas: HT-29 and Caco-2. In undifferentiated HT-29 cells, when the GDP/GTP cycle on the trimeric Gi3 protein is interrupted by either pertussis toxin treatment or by the transfection of a mutant of the Galphai3 protein with no GTPase activity (Q204L), we observed a decrease in the GAIP mRNA content. As these conditions are known to impair the Gi3-dependent lysosomal-autophagic pathway existing in undifferentiated HT-29 cells, we have investigated the role of GAIP in controling the lysosomal-autophagic pathway. Overexpression of GAIP stimulated protein degradation along the macroautophagic pathway. In contrast, overexpression of GAIP did not modify the low rate of macroautophagy in cells expressing the Q204L mutant of the Galphai3 protein. These results show that GAIP regulates a major catabolic pathway and that the expression of GAIP is dependent upon the activity of the Galphai3 protein and the state of enterocytic differentiation of cells.  相似文献   

8.
An oncogene-carrying replication-defective retrovirus was used to establish immortalised lines of murine glial cells. Primary cultures of early postnatal cerebellar cells were infected with a retrovirus based on the Murine Moloney Leukemia Virus containing a temperature-sensitive mutant of the Simian Virus 40 large T antigen (SV40 T) oncogene and a gene coding for resistance to the antibiotic G418. Infected cells were selected in G418 and after several in vitro passages cells expressing the O4 antigen were established as a cell line. At a later time point O4-positive single-cell clones were established. Two different types of clones were obtained: 1) "plastic" clones consisting of cells which initially had a morphological and antigenic phenotype of young glial precursor cells but which gradually lost these features, and 2) "stable" cell clones including a clone with the immunological and electrophysiological characteristics of Schwann cells. Culture of the latter cells in the presence of 1 mM dibutyryl cyclic adenosine monophosphate for a period of at least 10 days induced a change in shape and a shift in antigen expression towards a more "differentiated" maturation stage. When the SV40 T O4-positive immortalised cell line isolated on the cell sorter was transplanted into demyelinated lesions in adult rats, cells were observed ensheathing axons and forming limited amounts of PNS-type myelin. Glial cells immortalised with a temperature-sensitive mutant of the SV40 T oncogene thus retain many physiological properties of their primary culture counterparts and can be induced to undergo limited differentiation in vitro and in vivo. These cell lines, which represent immature CNS glia or Schwann cells, are providing useful tools for investigating the role of cell surface antigens involved in neuron-glial interactions.  相似文献   

9.
The survival and differentiation of neuronal cells is dependent on factors such as neurotrophins, cytokines and components of extracellular matrix. Bone marrow stromal cells have been shown to support the growth and differentiation of neuroblastoma cells. In an attempt to study the effects of bone marrow stromal cells on neuronal differentiation, we have co-cultured neuroblastoma x glioma hybrid NG108-15 cells with human bone marrow stromal cells. After co-culturing, clones exhibiting morphological differentiated phenotype and high level of neurofilament expression were isolated. Interestingly, these clones maintain their ability to proliferate in contrast to differentiated NG108-15 cells induced by dibutyryladenosine 3',5'-cyclic monophosphate. These results suggested that bone marrow stromal cells can induce partial differentiation of NG108-15 cells.  相似文献   

10.
Wild-type Escherichia coli K-12 strain JA221 grows poorly on low concentrations (< or = 1 mM) of diisopropyl fluorophosphate and its hydrolysis product, diisopropyl phosphate (DIPP), as sole phosphorus sources. Spontaneous organophosphate utilization (OPU) mutants were isolated that efficiently utilized these alternate sources of phosphate. A genomic library was constructed from one such OPU mutant, and two genes were isolated that conferred the OPU phenotype to strain JA221 upon transformation. These genes were identified as phnE and glpT. The original OPU mutation represented phnE gene activation and corresponded to the same 8-bp unit deletion from the cryptic wild-type E. coli K-12 phnE gene that has been shown previously to result in phnE activation. In comparison, sequence analysis revealed that the observed OPU phenotype conferred by the glpT gene was not the result of a mutation. PCR clones of glpT from both the mutant and the wild type were found to confer the OPU phenotype to JA221 when they were present on the high-copy-number pUC19 plasmid but not when they were present on the low-copy-number pWSK29 plasmid. This suggests that the OPU phenotype associated with the glpT gene is the result of amplification and overproduction of the glpT gene product. Both the active phnE and multicopy glpT genes facilitated effective metabolism of low concentrations of DIPP, whereas only the active phnE gene could confer the ability to break down a chromogenic substrate, 5-bromo-4-chloro-3-indoxyl phosphate-p-toluidine (X-Pi). This result indicates that in E. coli, X-Pi is transported exclusively by the Phn system, whereas DIPP (or its metabolite) may be transported by both Phn and Glp systems.  相似文献   

11.
This study assessed the growth pattern, cellular organisation and chemosensitivity of established human tumour cell lines growing as postconfluent cultures in 'V'-bottomed, 96-well microtiter plates. Cross-sections of the colon (HT29, SW620, SW1116), ovarian (A2780) and head and neck (UM-SCC-22B) carcinoma microcultures allowed in situ evaluation of the cellular organisation in the wells. After 5 days of growth, every cell line had reached confluence, but each of them displayed a specific pattern of cell stacking which ranged from two to ten layers. Postconfluent HT29 cells displayed morphologic features suggestive of some degree of enterocytic differentiation. Growth and cytotoxicity could be studied reliably and reproducibly in this system with the sulforhodamine B protein assay. Against HT29 postconfluent cultures, the EC50's (drug concentrations producing absorbance readings 50% lower than those of non-treated wells) of 5-fluorouracil and of the ether lipid, hexadecylphosphocholine, were 1 mM and 50 microM respectively. The possibility to perform chemosensitivity tests using semiautomated microtiter plate technology supports further evaluation of this system as an alternative antitumour drug testing model.  相似文献   

12.
The effects of diltiazem (DIL), verapamil (VRP) and Ca2+ on the accumulation of methotrexate (MTX) were investigated in isolated rat hepatocytes. At the physiological 2 mM Ca2+, the calcium-channel blockers DIL (100 microM) and VRP (50 microM) significantly reduced the hepatocellular accumulation of MTX. By increasing the Ca2+ concentration to 7 mM control MTX levels (at 2 mM Ca2+) were restored with VRP, and resulted in MTX levels above the controls for DIL. Ca2+ at 7 mM significantly enhanced MTX accumulation in the hepatocyte suspensions after 60 min. The concentration time curves for MTX indicated that for the first 10 min influx was the dominating process. Dixon plot analysis of this uptake phase revealed Ki values of 140 microM for DIL and 75 microM for VRP. The data suggested that DIL was a non-competitive, and VRP a competitive inhibitor of MTX influx. Hence, the inhibitory effect on MTX accumulation mediated by DIL and VRP could be due to different mechanisms.  相似文献   

13.
The efficacy of all chemotherapeutic agents is limited by the occurrence of drug resistance. To further understand resistance to topoisomerase (topo) II inhibitors, 50 sublines were isolated as single clones from parental cells by exposure to ETP or m-AMSA. Subsequently, a population of cells from each subline was exposed to three-fold higher drug concentrations allowing 16 stable sublines to be established at higher extracellular drug concentration. The frequency and nature of mutations in topo II in the drug selected cell lines have been evaluated. In order to screen a large number of cell lines, an RNase protection assay was developed. Fragments covering the entire coding sequence of topo II was isolated after PCR amplification and subcloned in pGEM3Z vector. Using this approach, mismatches was observed in 13.6% of resistant cell lines (12% of resistant cell lines exposed to lower drug concentrations and 18.8% of resistant cell lines exposed to higher drug concentrations). Our findings suggest that mutations of topo II gene seem to be an important and frequent mechanism of resistance to topo II inhibitors.  相似文献   

14.
The biological activity and cellular metabolism of ZD1694, a novel folate-based thymidylate synthase (TS) inhibitor, were analyzed in a human leukemia cell line, MOLT-3, and its antifolate-resistant sublines with different mechanisms of resistance to methotrexate (MTX), trimetrexate (TMQ) and N10-propargyl-5,8-dideazafolic acid (CB3717). MOLT-3/CB3717(40), which was selected for CB3717 resistance, demonstrated impaired membrane drug transport via reduced folate carrier (RFC) and lower accumulation of [3H]ZD1694-polyglutamates in the cells with a shift in the polyglutamate distribution profile to shorter chain length polyglutamates, indicating an alteration in polyglutamation capacity in this subline. Impaired RFC and reduced rate of polyglutamation could explain the cross-resistance (12-fold) of this subline to ZD1694. On the other hand, there was little or no cross-resistance to this drug in a subline (MOLT-3/TMQ800) reportedly resistant to TMQ through impaired membrane transport for TMQ and an increase in dihydrofolate reductase (DHFR) activity. Total amount of ZD1694 polyglutamated to a level higher than diglutamate was approximately 1.7-fold higher in the TMQ-resistant cells than that in the parent cells, but a low degree of increase in TS activity in the cells counteracted the supposed increase in sensitivity to ZD1694. MOLT-3/TMQ800-MTX10000 cells, which were established by sequential exposure of the TMQ-resistant cells to MTX and were previously shown to amplify mutated DHFR with low affinity for MTX, showed a decreased accumulation of polyglutamated ZD1694 as compared with the parent line and this was consistent with cross-resistance to ZD1694 in this subline. Overproduction of variant DHFR scarcely influenced the sensitivity to this drug. These results indicate that ZD1694 could overcome antifolate resistance through a mechanism such as amplified DHFR activity, and the biological activity of this drug against the cells paralleled the amount of polyglutamated drug inside the cells. Determination of polyglutamation capacity in tumor cells may allow prediction of sensitivity to this drug.  相似文献   

15.
The in vitro amplification method for heterologous gene expression in mammalian cells is based on the stable transfection of cells with long, linear DNA molecules having several copies of complete expression units, coding for the gene of interest, linked to one terminal unit, coding for the selectable marker. DNA concatenamers containing additional expression units can also be prepared: we exploited this feature by co-polymerizing expression units coding for granulocyte colony-stimulating factor (G-CSF) with cassettes for dihydrofolate reductase (DHFR) and for neomycin (Nm) resistance, as selectable markers. We were thus able to obtain high level production of G-CSF in chinese hamster ovary (CHO) dhfr- cells by combining in vitro amplification to just one step of in vivo amplification. This approach required a considerably shorter time than the classical, stepwise amplification by methotrexate.  相似文献   

16.
Although apoptosis can be induced by the enforced expression of exogenously introduced c-myc genes, it is not clear whether overexpression resulting from the amplification of the resident c-myc gene in tumor cells is sufficient to induce apoptosis. We have investigated the relationship between c-myc gene amplification and the propensity of tumor cells to undergo apoptosis, using the SW613-12A1 and SW613-B3 cell lines, which are representatives, respectively, of tumorigenic and non-tumorigenic clones isolated from the SW613-S human colon carcinoma cell line. Tumorigenic clones are characterized by a high level of amplification and expression of the c-myc gene, whereas cells of non-tumorigenic clones have a small number of copies and a lower level of expression of this gene. Analysis of c-myc mRNA level in cells cultured under low serum conditions indicated that the expression of the gene is tightly regulated by serum growth factors in non-tumorigenic B3 cells, whereas it is poorly regulated in tumorigenic 12A1 cells, the level of mRNAs remaining relatively high in serum-starved 12A1 cells. Under these conditions, 12A1 cells showed clear evidence of apoptosis, whereas B3 cells were completely refractory to the induction of apoptosis. Moreover, the study of cell lines derived from non-tumorigenic apoptosis-resistant clones following the introduction by transfection of exogenous c-myc gene copies showed that they have acquired an apoptosisprone phenotype. Altogether, our results strongly suggest that deregulated c-myc expression due to high-level amplification confers an apoptosis-prone phenotype to tumor cells. The possible consequences of these observations for cancer therapy are discussed.  相似文献   

17.
Thirteen human bifidobacterial strains were tested for their abilities to adhere to human enterocyte-like Caco-2 cells in culture. The adhering strains were also tested for binding to the mucus produced by the human mucus-secreting HT29-MTX cell line in culture. A high level of calcium-independent adherence was observed for Bifidobacterium breve 4, for Bifidobacterium infantis 1, and for three fresh human isolates from adults. As observed by scanning electron microscopy, adhesion occurs to the apical brush border of the enterocytic Caco-2 cells and to the mucus secreted by the HT29-MTX mucus-secreting cells. The bacteria interacted with the well-defined apical microvilli of Caco-2 cells without cell damage. The adhesion to Caco-2 cells of bifidobacteria did not require calcium and was mediated by a proteinaceous adhesion-promoting factor which was present both in the bacterial whole cells and in the spent supernatant of bifidobacterium culture. This adhesion-promoting factor appeared species specific, as are the adhesion-promoting factors of lactobacilli. We investigated the inhibitory effect of adhering human bifidobacterial strains against intestinal cell monolayer colonization by a variety of diarrheagenic bacteria. B. breve 4, B. infantis 1, and fresh human isolates were shown to inhibit cell association of enterotoxigenic, enteropathogenic, diffusely adhering Escherichia coli and Salmonella typhimurium strains to enterocytic Caco-2 cells in a concentration-dependent manner. Moreover, B. breve 4 and B. infantis 1 strains inhibited, dose dependently, Caco-2 cell invasion by enteropathogenic E. coli, Yersinia pseudotuberculosis, and S. typhimurium strains.  相似文献   

18.
To explore the role of homeobox genes in the intestine, the human colon adenocarcinoma cell line Caco2-TC7 has been stably transfected with plasmids synthesizing Cdx1 and Cdx2 sense and antisense RNAs. Cdx1 overexpression or inhibition by antisense RNA does not markedly modify the cell differentiation markers analyzed in this study. In contrast, Cdx2 overexpression stimulates two typical markers of enterocytic differentiation: sucrase-isomaltase and lactase. Cells in which the endogenous expression of Cdx2 is reduced by antisense RNA attach poorly to the substratum. Conversely, Cdx2 overexpression modifies the expression of molecules involved in cell-cell and cell-substratum interactions and in transduction process: indeed, E-cadherin, integrin-beta4 subunit, laminin-gamma2 chain, hemidesmosomal protein, APC, and alpha-actinin are upregulated. Interestingly, most of these molecules are preferentially expressed in vivo in the differentiated villi enterocytes rather than in crypt cells. Cdx2 overexpression also results in the stimulation of HoxA-9 mRNA expression, an homeobox gene selectively expressed in the colon. In contrast, Cdx2-overexpressing cells display a decline of Cdx1 mRNA, which is mostly found in vivo in crypt cells. When implanted in nude mice, Cdx2-overexpressing cells produce larger tumors than control cells, and form glandular and villus-like structures. Laminin-1 is known to stimulate intestinal cell differentiation in vitro. In the present study, we demonstrate that the differentiating effect of laminin-1 coatings on Caco2-TC7 cells is accompanied by an upregulation of Cdx2. To further document this observation, we analyzed a series of Caco2 clones in which the production of laminin-alpha1 chain is differentially inhibited by antisense RNA. We found a positive correlation between the level of Cdx2 expression, that of endogenous laminin-alpha1 chain mRNA and that of sucrase-isomaltase expression in these cell lines. Taken together, these results suggest (a) that Cdx1 and Cdx2 homeobox genes play distinct roles in the intestinal epithelium, (b) that Cdx2 provokes pleiotropic effects triggering cells towards the phenotype of differentiated villus enterocytes, and (c) that Cdx2 expression is modulated by basement membrane components. Hence, we conclude that Cdx2 plays a key role in the extracellular matrix-mediated intestinal cell differentiation.  相似文献   

19.
Role of ceramide in cellular senescence   总被引:1,自引:0,他引:1  
Recently the sphingomyelin cycle, involving the hydrolysis of membrane sphingomyelin by an activated sphingomyelinase to generate ceramide, has emerged as a key pathway in cell differentiation and apoptosis in leukemic and other cell types. Here we investigate a role for this pathway in the senescence of WI-38 human diploid fibroblasts (HDF). We found that endogenous levels of ceramide increased considerably (4-fold) and specifically (compared with other lipids) as cells entered the senescent phase. Investigation of the mechanism of increased ceramide led to the discovery that neutral sphingomyelinase activity is elevated 8-10 fold in senescent cells. There were no changes in sphingomyelinase activity or ceramide levels as HDF entered quiescence following serum withdrawal or contact inhibition. Thus, the activation of the sphingomyelinase/ceramide pathway in HDF is due to senescence and supports the hypotheses that senescence represents a distinct program of cell development that can be differentiated from quiescence. Additional studies disclosed the ability of ceramide to induce a senescent phenotype. Thus, when exogenous ceramide (15 microM) was administered to young WI-38 HDF, it produced endogenous levels comparable to those observed in senescent cells (as determined by metabolic labeling studies). Ceramide concentrations of 10-15 microM inhibited the growth of young HDF and induced a senescent phenotype by its ability to inhibit DNA synthesis and mitogenesis. These concentrations of ceramide also induced retinoblastoma dephosphorylation and inhibited serum-induced AP-1 activation in young HDF, thus recapitulating basic biochemical and molecular changes of senescence. Sphingomyelinase and ceramide may thus be implicated as mediators of cellular senescence.  相似文献   

20.
Thymidylate synthase (TS) inhibitor effects on growth of human head and neck squamous cell carcinoma (HNSCC) cell lines and CCRF-CEM human leukemia cells and sublines with acquired methotrexate (2,4-diamino-10-methylpteroylglutamic acid) (MTX) resistance were studied. During 120-h treatment, HNSCC cell lines A253 and FaDu are equally sensitive to MTX, whereas the polyglutamylatable TS inhibitors ZD1694 and BW1843U89 are 5- to 35-fold more potent than MTX and the lipophilic AG331 is approximately 10(2)-fold less potent than MTX. A253 is intrinsically resistant to intermittent (24 h) MTX and BW1843U89 exposure (higher EC50 values and shallower slopes of concentration-response curves relative to FaDu); AG331 and ZD1694 largely overcome this intrinsic resistance to intermittent exposure. Thymidine (TdR) protects against growth inhibition by these inhibitors, confirming that TS is their target in HNSCC; at high AG331 levels, TdR only partially protects, implying that a second site of action exists. Growth inhibition of HNSCC by ZD1694 and BW1843U89 is protected by leucovorin (LV) at > or = 10(-7) and > 10(-3) M, respectively; 10(-4) M LV cannot protect HNSCC cells against AG331. Results similar to protection studies are obtained if LV addition is delayed < or = 24 h after ZD1694 or BW1843U89 exposure. CCRF-CEM sublines with acquired MTX resistance resulting from dihydrofolate reductase (DHFR) overexpression, defective MTX transport, or defective MTX polyglutamylation retain full sensitivity to AG331. Cells with defective MTX transport are highly cross-resistant to ZD1694 and BW1843U89, implicating the reduced folate/MTX carrier in their transport. Minor cross-resistance of the DHFR overexpressing line to ZD1694 and BW1843U89 is observed. A subline with highly defective MTX polyglutamylation is cross-resistant to 120-h exposure to ZD1694, but not to BW1843U89, suggesting a profound contribution of polyglutamylation to the mechanism of action of ZD1694.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号