首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasmid pNDTM2 was constructed to contain the p(R)-p(L) promoter and the phbC, A, and B genes which code for PHB synthase, beta-ketothiolase, and acetoacetyl-CoA reductase, respectively. This plasmid was transformed into Escherichia coli XL1-Blue. The effect of several thermal induction patterns on the production of poly-3-hydroxybutyric acid (PHB) was investigated based on fermentor experiments. Based on the experimental results with different induction patterns, it was found that the temperature should be controlled at 34 degrees C during the initial 10 h of cultivation to promote cell growth, and then it should be increased to 40 degrees C for induction. Then the temperature should be lowered to 37 degrees C after 5 h to relieve the effect of the heat shock.  相似文献   

2.
The regulatory mechanism for poly-3-hydroxybutyrate (PHB) biosynthesis in recombinant Escherichia coli is markedly different from that of Ralstonia eutropha (formerly, Alcaligenes eutrophus) since the former efficiently synthesizes PHB during growth without any nutrient limitation. To analyze how the central metabolic pathways should be balanced with pathways necessary for cell growth and PHB formation, a stoichiometric model was developed to predict the theoretical maximum PHB production capacity for different metabolic variants. Flux analysis results illustrated the importance of the availability of acetyl-CoA and NADPH for achieving the maximum yield of PHB. In order to examine whether the increased availability of the above substances can enhance PHB synthesis in recombinant E. coli, both genetic and environmental perturbations were attempted. Several E. coli K12 derivatives, namely, HMS174, TA3516 (pta-/ack-), and DF11 (pgi-), were transformed with a plasmid which contains the native phb operon. The fermentation characteristics of these recombinant strains were studied and compared. In this study we examined the effects of intracellular acetyl-CoA accumulation, which may promote PHB synthesis in vivo, by perturbations induced from attenuation of acetate kinase and phosphotransacetylase (TA3516, blocked in the acetate pathway) and by cultivation of E. coli HMS174 on gluconate; it can convert gluconate to acetyl-CoA at a higher rate. The effects of intracellular accumulation of NADPH were investigated by introducing a perturbation induced from attenuation of phosphoglucose isomerase, which redirects the carbon flow to the pentose-phosphate (PP) pathway. Results from the analyses of these perturbations indicate that intracellular buildup of acetyl-CoA may not be able to promote PHB synthesis in vivo. On the other hand, since the biosynthesis of PHB in the pgi- mutant strain can utilize the NADPH overproduced through the PP pathway, the growth of the pgi- mutant on glucose was recovered, indicating that the overproduction of NADPH might be able to enhance PHB synthesis.  相似文献   

3.
胡迪  张少辉 《食品科学》2011,32(11):198-203
设计4个乳源性免疫活性肽的目的基因后,利用基因重组技术成功构建原核表达载体pTYB11,并将重组质粒转化到E.coli BL21中,通过改变异丙基-β-D-硫代吡喃半乳糖苷 (IPTG)的浓度、培养时间和培养温度,设计正交试验来优化乳源活性小肽的IPTG诱导表达条件,使目的蛋白可在E.coli BL21中高效表达。依据15% SDS-PAGE电泳分析得到融合蛋白的表达量,选出最适诱导条件为IPTG终浓度0.1~0.2mmol/L,在12~15℃条件下培养20h,得到大小为59.2kD左右的融合目的蛋白,其表达量可占总蛋白表达量的40%,经Western Blotting鉴定正确。  相似文献   

4.
Heat-shock induction of heat-shock protein genes is due to a specific promoter element (the heat-shock element, HSE). This study used lacZ under HSE control (HSE-lacZ) to characterize HSE activity in Saccharomyces cerevisiae cells of different physiological states and differing genetic backgrounds. In batch fermentations HSE-lacZ induction by heat shock was maximal in exponential growth, and showed marked decline with the approach to stationary phase. Expression in the absence of heat shock was unaffected by growth phase, indicating that the growth-dependent expression of many yeast heat-shock genes uses promoter elements in addition to the HSE. Heat-induced expression was strongly influenced by the temperature at which cultures were grown. While basal, uninduced expression was constant during growth at different temperatures to 30 degrees C, induction by transfer to 39 degrees C was reduced by increases in growth temperature as low as 18-24 degrees C. Maximal HSE-lacZ induction (30- to 50-fold) was in cultures grown at low temperatures (18-24 degrees C), then heat shocked at 39 degrees C. Ethanol was a poor inducer. Mutations having little effect on HSE-lacZ expression included a respiratory petite; ubi4 (which inactivates the poly-ubiquitin gene); also ubc4 and ubc5 (which each inactivate one of the ubiquitin ligases involved in degradation of aberrant protein). pep4-3 increased both basal and induced beta-galactosidase about two-fold, probably because of slower turnover of this enzyme in pep4-3 strains.  相似文献   

5.
Exposure of Lactococcus lactis subsp. lactis cells to a heat shock at 40 degrees C for 30 min induces thermotolerance, the increased ability of bacterial cells to survive exposure to lethal temperature (52 degrees C for 25 min). This transient state of thermal resistance is accompanied, as in Escherichia coli, by the synthesis of a new set of specific proteins termed heat-shock proteins (Hsps). Pre-treatment of the bacterial cells by antibiotics (streptomycin, spiramycin, kanamycin and erythromycin) known to act on translation, induces the major Hsps synthesis but no thermal protection; conversely, puromycin and amino acid analogues treatments, known to produce abnormal and incomplete peptides, triggers the thermotolerance state without inducing significant Hsps synthesis. These results demonstrate that heat-shock response and induced thermotolerance are not tightly correlated phenomena in L. lactis subsp. lactis.  相似文献   

6.
The porphobilinogen deaminase encoded by the Clostridium josui hemC gene was purified from a recombinant Escherichia coli strain and its properties were characterized. The optimal temperature and pH of the purified enzyme were 65 degrees C and 7.0, respectively. This enzyme was quite thermostable: it retained 86% of the original activity after incubation at 70 degrees C for 1 h. The Km and Vmax values of the enzyme were 65 microM and 3.3 micromol/h/mg for porphobilinogen, respectively.  相似文献   

7.
The prolyl oligopeptidase TNA1_POP was found to be encoded in the genome of the hyperthermophilic archaeon Thermococcus sp. NA1 and showed high similarities to its archaeal homologs (76-83%). The enzyme was found to be a single polypeptide composed of 616 amino acids with conserved signature domains. A recombinant TNA1_POP expressed in Escherichia coli was capable of hydrolyzing succinyl-Ala-Pro-p-nitroanilide (Suc-Ala-Pro-pNA) with temperature and pH optimums of 80 degrees C and 7, respectively. TNA1_POP activity appeared to be significantly activated by pre-incubation at 80 degrees C and 90 degrees C with the optimum temperature unchanged. The heat-activated enzyme exhibited a k(cat) approximately twofold higher than that of the unheated enzyme, however, both enzymes showed the same K(m). TNA1_POP was thermostable at 80 degrees C retaining 80% of its heat-activated activity even after 23 h, but it lost its enzymatic activity at 90 degrees C with a half-life of 3 h. The loss of the enzymatic activity at 90 degrees C seemed to be caused by the autodegradation of the enzyme, not by thermal denaturation, as supported by circular dichroism spectropolarimetry. Autodegradation fragments ranging from 2 to 18 kDa were mapped by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry.  相似文献   

8.
For better understanding of the complex behaviour of Escherichia coli at chiller temperatures, log phase E. coli grown at 15 degrees C were incubated at 8, 6, or 2 degrees C for 4 days, and were then incubated at 15 degrees C for 12 h. Cultures were sampled after incubation at the lower temperatures, and during subsequent incubation at 15 degrees C. Proteins extracted from the samples were separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE). Spots of 45 previously identified proteins that were differentially expressed at 15 or < or =8 degrees C were quantified by image analysis. After incubation at 8 or 6 degrees C for 4 days cells were growing with or without formation of elongated cells (filaments), respectively, but growth did not occur at 2 degrees C. In cells incubated at 8 or 6 degrees C proteins associated with the stress response and energy generation were upregulated and proteins associated with protein synthesis were downregulated, while protein levels in cells incubated at 2 degrees C were little changed. When cells were then incubated at 15 degrees C, the levels of differentially expressed proteins in cells that had been incubated at 8 or 6 degrees C decreased or increased towards the levels found in cells growing at 15 degrees C, but some proteins were still under or over expressed after 12 h. In cells incubated at 15 degrees C after incubation at 2 degrees C, the levels of many of the proteins declined but the levels of proteins associated with protein synthesis increased. The findings indicate that the physiological states of log phase E. coli incubated at < or =2 degrees C or at higher chiller temperature are different, but that for both states incubation at an above chiller temperature for >3 generations is required before protein levels adjusted to those usual for the higher temperature. Cells in these different physiological states may respond differently to other stresses encountered during warming of chilled foods.  相似文献   

9.
Mycobacterium phlei WU-F1 possesses the ability to convert dibenzothiophene (DBT) to 2-hydroxybiphenyl with the release of inorganic sulfur over a wide temperature range from 20 degrees C to 50 degrees C. The conversion is initiated by consecutive sulfur atom-specific oxidations by two monooxygenases, and a flavin reductase is essential in combination with these flavin-dependent monooxygenases. The flavin reductase gene (frm) of M. phlei WU-F1, which encodes a protein of 162 amino acid residues with a molecular weight of 17,177, was cloned and the deduced amino acid sequence shares approximately 30% identity with those of several flavin reductases in two protein-component monooxygenases. It was confirmed that the coexpression of frm with the DBT-desulfurization genes (bdsABC) from M. phlei WU-F1 was critical for high DBT-desulfurizing ability over a wide temperature range from 20 degrees C to 55 degrees C. The frm gene was overexpressed in Escherichia coli cells, and the enzyme (Frm) was purified to homogeneity from the recombinant cells. The purified Frm was found to be a 34-kDa homodimeric protein with a monomeric molecular mass of 17 kDa. Frm exhibited high flavin reductase activity over a wide temperature range, and in particular, the turnover rate for FMN reduction with NADH as the electron donor reached 564 s(-1) at 50 degrees C, which is one of the highest activities among all of the flavin reductases previously reported. Intriguingly, Frm also exhibited a high ferric reductase activity.  相似文献   

10.
11.
Early stationary phase cells of Listeria monocytogenes (Scott A) were examined to determine the effect of heat-shock on the production of listeriolysin O (LLO) during and after resuscitation at 37 degrees C. Cells were subjected to a heat-shock at 48 degrees C for 1 h. Intracellular and extracellular proteins of the heat-shocked cells were assayed for LLO using a microtiter plate hemolysis assay and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Our results showed that significant amounts of LLO are synthesized under heat-shock conditions that are not detected in the extracellular medium by a functional assay. This situation is evident by the absence of hemolytic activity immediately after heat-shock, and may be due to either a lack of excretion or inactivation of the LLO at 48 degrees C once outside the cell. By studying the intracellular and extracellular proteins using SDS-PAGE and immunoblots of the heat-shocked cells, we substantiated an absence of excretion as an operating mechanism. Heat-shocked cells resumed LLO production within 2-4 h of resuscitation at 37 degrees C, achieving an activity level 2-fold higher compared to the controls and 4-fold higher compared to cells immediately after heat-shock. Most likely, the LLO excreted must have been from LLO accumulated in the cells during heat-shock.  相似文献   

12.
Investigations concerning recombinant a-amylases from Pyrococcus woesei and thermostable a-glucosidase from Thermus thermophilus indicate their suitability for starch processing. Furthermore, the study of recombinant ss-galactosidase from Pyrococcus woesei suitable for purpose of low lactose milk and whey production are also presented. The activity of this enzyme in a wide pH range of 4.3-6.6 and high thermostability suggests that it can be used for processing of dairy products at temperatures which restrict microbial growth during a long operating time of continuous-flow reactor with an immobilized enzyme system. Preparation of recombinant a-amylase and ss-galactosidase was facilitated by cloning and expression of genes from Pyrococcus woesei in Escherichia coli host. Satisfactory level of recombinant enzymes purification was achieved by thermal precipitation of native proteins originated from Escherichia coli. The obtained a-amylase has maximal activity at pH 5.6 and 93 degrees C. The half-life of this preparation (pH 5.6) at 90 degrees C and 110 degrees C was 11 h and 3.5 h, respectively, and retained 24% of residual activity following incubation for 2 h at 120 degrees C. An advantageous attribute of recombinant a -amylase is independence of its activity and stability on calcium salt. a-Glucosidase from Thermus thermophilus also not require metal ions for stability and retained about 80% of maximal activity at pH range 5.8-6.9. Thus, this enzyme can be used together with recombinant a-amylase.  相似文献   

13.
The heat-adaptive response of the psychrotrophic spoilage bacterium Bacillus weihenstephanensis DSM11827 is described. It is demonstrated that vegetative cells of B. weihenstephanensis adapts to heat exposure at 47 degrees C by prior exposure to heat at the nonlethal temperature of 38 degrees C. For this adaptive response, protein synthesis is required and maximum adaptation was noted after 15 min to 2 h prior exposure at 38 degrees C. By using two-dimensional gel electrophoresis (2D-E), an overview of the heat-shock proteins (HSPs) of B. weihenstephanensis was obtained and it was shown that the production of 15 proteins increased upon exposure to 38 degrees C. In more detail, the use of specific antibodies revealed induction of the HSPs DnaK, DnaJ, GroEL, ClpC, ClpP and ClpX of B. weihenstephanensis. In addition, also pre-exposure to other stresses than heat, such as exposure to a high salt concentration, low pH, a high ethanol concentration or low temperature, resulted in development of increased heat tolerance of B. weihenstephanensis, and during these conditions, an increased production of some HSPs was noted. This phenomenon of cross-protection might be of substantial importance in relation to the design of safe minimal processing regimes.  相似文献   

14.
Coexpression of two classes of folding accessory proteins, molecular chaperones and foldases, can be expected to improve the productivity of soluble and active recombinant proteins. In this study, horseradish peroxidase (HRP), which has four disulfide bonds, was selected as a model enzyme and overexpressed in Escherichia coli. The effects of coexpression of a series of folding accessory proteins (DnaK, DnaJ, GrpE, GroEL/ES, trigger factor (TF), DsbA, DsbB, DsbC, DsbD, and thioredoxin (Trx)) on the productivity of active HRP in E. coli were examined. Active HRP was produced by very mild induction with 1 microM isopropyl-beta-D-thiogalactopyranoside (IPTG) at 37 degrees C, whereas the amount of active HRP produced by the induction with 1 mM IPTG was negligibly small. Active HRP production was increased significantly by coexpression of DsbA-DsbB (DsbAB) or DsbC-DsbD (DsbCD), while coexpression of molecular chaperones did not improve active HRP production. The growth of E. coli cells was inhibited significantly by the induction with 1 mM IPTG in a HRP single expression system. In contrast, when HRP was coexpressed with DsbCD, the growth inhibition of E. coli was not observed. Therefore, coexpression of Dsb proteins improves both the cell growth and the productivity of HRP.  相似文献   

15.
Temperature is used to control the growth of microorganisms in foods. The minimum temperature for sustained growth of Escherichia coli is 7 degrees C. E. coli cells in the logarithmic phase of growth at 15 degrees C were incubated at 8, 6 or 2 degrees C. The cells grew with the formation of filaments at the two higher temperatures, but did not grow at 2 degrees C. In order to investigate more thoroughly the nature of filament formation in E. coli at temperatures near the minimum temperature for sustained growth, cells were harvested after 1 day at 2 degrees C or at times up to 4 or 8 days at 8 or 6 degrees C, respectively. Proteins extracted from the cells were separated by two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and spots containing differentially expressed proteins were identified by quadropole time-of-flight tandem (Q-ToF-2) mass spectrometry. For most of the identified proteins, the amounts were not substantially different in cells grown at 15 degrees C or incubated at 2 degrees C. In cells incubated at 8 or 6 degrees C, proteins associated with stress responses, the tricarboxylic acid cycle and electron transport were present in substantially greater amounts, and proteins associated with protein synthesis were present in substantially smaller amounts than in cells grown at 15 degrees C. These findings suggest that the stringent response is induced in E. coli incubated at temperatures near the minimum for growth, so the formation of filaments at those temperatures may be a result of the stringent response.  相似文献   

16.
Heat shock proteins play an important role in protecting bacterial cells against several stresses, including starvation. In this study, the promoters for two genes encoding heat shock proteins involved in many stress responses, UspA and GrpE, were fused with the green fluorescent protein (gfp) gene. Thus, the expression of the two genes could be quantified by measuring the fluorescence emitted by the cells under different environmental conditions. The heat resistance levels of starved and nonstarved cells during storage at 5, 10, and 37 degrees C were compared with the levels of expression of the uspA and grpE genes. D52-values (times required for decimal reductions in count at 52 degrees C) increased by 11.5, 14.6, and 18.5 min when cells were starved for 3 h at 37 degrees C, for 24 h at 10 degrees C, and for 2 days at 5 degrees C, respectively. In all cases, these increases were significant (P < 0.01), indicating that the stress imposed by starvation altered the ability of E. coli O157:H7 to survive subsequent heat treatments. Thermal tolerance was correlative with the induction of UspA and GrpE. At 5 degrees C, the change in the thermal tolerance of the pathogen was positively linked to the induced expression of the grpE gene but negatively related to the expression of the uspA gene. The results obtained in this study indicate that UspA plays an important role in starvation-induced thermal tolerance at 37 degrees C but that GrpE may be more involved in regulating this response at lower temperatures. An improvement in our understanding of the molecular mechanisms involved in these cross-protection responses may make it possible to devise strategies to limit their effects.  相似文献   

17.
噬夏孢欧文氏菌基因crtE编码GGPP合成酶。通过PCR扩增获得crtE基因,克隆进表达载体,构建表达质粒pET-15bcrtE。重组质粒转化E.coli BL21(DE3),构建工程菌;重组GGPP合成酶在大肠杆菌中实现了高效表达,表达量占菌体总蛋白的42%。重组蛋白以包含体形式存在,包含体经洗涤、尿素溶解、复性并经镍离子亲和层析树脂纯化,得到了电泳纯的重组噬夏孢欧文氏菌GGPP合成酶,带有His-tag的该蛋白分子量为34kDa,pI值为6.3。  相似文献   

18.
The dengue virus is currently the most important flavivirus causing human diseases in the tropical and subtropical regions of the world. The envelope protein domain III of dengue virus type 2 (D2EIII), which induces protective and neutralizing antibodies, was expressed as an N-terminal fusion to a hexa-histidine tag in Escherichia coli. The expression of recombinant D2EIII of 103 amino acids in the soluble form can be achieved using suitable host strains, such as Origami, at a low induction temperature of 18 degrees C. The enhanced production of the soluble protein could be attributed to the thioredoxin reductase (trxB) and glutathione reductase (gor) double mutations in the Origami genome. The soluble and refolded D2EIII proteins were recognized by different antibodies including human patient antiserum. The immunization of rats with soluble D2EIII protein elicited the production of antibodies that could recognize the D2EIII protein in the D2EIII precursor protein and in C-terminal truncated dengue envelope protein type 1-4. Thus, this protein production system is suitable for the production of authentic recombinant dengue proteins that may be used in the diagnosis of the dengue virus infection or in vaccine development.  相似文献   

19.
The gene encoding extracellular poly(3-hydroxybutyrate) depolymerase from a thermophilic poly(3-hydroxybutyrate)-degrading bacterium, strain HS, was cloned and intracellularly expressed in Escherichia coli. The gene was found to consist of 1485-bp nucleotide sequence coding for a 22-amino-acid signal peptide and a 473-amino-acid mature protein. Phylogenetic analysis and domain structure showed that the enzyme was clustered with type II PHB depolymerases. The gene was expressed in E. coli under the control of the tac promoter. A 46-kDa protein was detected in the cell extract by SDS-PAGE. The N-terminal sequence of the protein agreed with that of the original enzyme. The crude enzyme was able to degrade PHB particles at 70 degrees C.  相似文献   

20.
The protein pattern of yeast cells which have arrested proliferation in response to glucose exhaustion is drastically different from that of exponentially growing cells (Boucherie, 1985). In this study, we used two-dimensional gel electrophoresis to characterize the protein events responsible for these alterations. We found that the induction of heat-shock proteins is one of the major events responsible for these changes. This induction accounts for the synthesis of 18 of the 35 novel polypeptides observed in glucose-limited cells. It was shown to occur in combination with two other protein events: the derepression of carbon catabolite repressed proteins, which accounts for the synthesis of the other novel polypeptides, and an arrest of the synthesis of almost all the proteins present in exponentially growing cells. The time course of each of these events was determined by carrying out a detailed analysis of the pattern of proteins synthesized at various stages of a culture exhausting its glucose supply, and by the measurement of the rate of synthesis of individual polypeptides. The results showed in particular that the synthesis of most of the heat-shock proteins synthesized in glucose-limited cells was induced closely before glucose exhaustion, and that this synthesis was transient, climaxing by the time glucose was exhausted. Under the culture condition investigated, the entry into stationary phase associated with glucose limitation began several hours before glucose exhaustion. It was thus concluded that the observed induction of heat-shock proteins is directly related to the nutritional limitation and is independent from the arrest of cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号