首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three studies investigated the effects of the ability to avoid or escape shock (controllability) and the lack of ability to do so (uncontrollability) on noradrenergic neurons in various brain regions of 104 male Wistar rats. Brain levels of noradrenaline (NA) and its major metabolite, 3-methoxy-4-hydroxyphenylethyleneglycol sulfate (MHPG-SO?), were measured fluorometrically. Results indicate that after 3 or 6 hrs in a free operant avoidance-escape stress procedure, the experimental Ss able to avoid or escape shock showed greater increases in NA turnover (lower NA levels and higher MHPG-SO? levels) in the hypothalamus, amygdala, and thalamus than the yoked Ss unable to control the same shock. After 21 hrs of stress, yoked Ss exhibited a more marked enhancement of NA turnover in these brain regions than did experimental Ss. Once shock-controlling responses had been acquired and well established by experimental Ss, the responses of NA neurons in these Ss did not differ markedly from those in the nonshocked controls. Yoked Ss given the same repetitive sessions of uncontrollable shock displayed sustained increases in NA turnover preferentially in the hypothalamus and amygdala, compared with the experimental Ss. Results suggest that NA release in specific brain regions in the experimental "coping" rats is increased before the rats have learned the effective coping response. However, once a coping response is firmly established, NA release is reduced. (52 ref) (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
Influence of a naloxone (an opioid receptor antagonist) challenge (5 mg/kg, IP) on levels of biogenic amines and their metabolites in various brain regions of rats infused continuously with butorphanol (a mu/delta/kappa mixed opioid receptor agonist; 26 nmol/microliter/h) or morphine (a mu-opioid receptor agonist; 26 nmol/microliter/h) was investigated using high-performance liquid chromatography with electrochemical detection (HPLC-ED). Naloxone precipitated a withdrawal syndrome and decreased the levels of: dopamine (DA) in the cortex and striatum, 3,4-dihydroxyphenylacetic acid (DOPAC) in the striatum, homovanilic acid (HVA) in the striatum, limbic, midbrain, and pons/medulla regions in butorphanol-dependent rats. However, the levels of norepinephrine (NE), serotonin (5-hydroxytryptamine; 5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in the regions studied were not affected by naloxone-precipitated withdrawal. In addition, naloxone increased the HVA/DA ratio in the cortex, while this ratio was reduced in the limbic, midbrain, and pons/medulla. The reduction of 5-HIAA/5-HT ratio was also detected in the limbic area. In the animals rendered dependent on morphine, the results obtained were similar to those of butorphanol-dependent rats except for changes of 5-HIAA levels in some brain regions. These results suggest that an alteration of dopaminergic neuron activity following a reduction of DA and its metabolites in specific brain regions (e.g., striatum, limbic, midbrain, and pons/medulla) play an important role in the expression of the opioid withdrawal syndrome.  相似文献   

3.
The effect of daily repeated 10 min immobilization on the serotoninergic neurotransmission and serum corticosterone levels was studied. Male Lewis rats were immobilized for a 10 min period daily once or on 5 consecutive days. Serotoninergic neurotransmission was followed using differential in vivo pulse voltammetry with carbon fibre electrodes measuring extracellular 5-hydroxyindoleacetic acid (5-HIAA) levels. Recordings were performed in brain areas involved in the control of behaviour, mood, and stress response such as the frontal cortex, the hippocampal CA-3 and dentate gyrus, the striatum, and the raphe nuclei dorsalis (NRD) and medialis (MRN). The first immobilization resulted in an increase of the extracellular 5-HIAA levels in all areas under study, except the striatum where no reaction was observed. The major effect was recorded in the frontal cortex, showing an increase of about 400% as compared to control, which lasted for 3h after the end of the immobilization period. Beginning on day 2 in all areas, except the striatum, a consecutive habituation to the stressor seemed to occur, since the stress-induced increase in the voltammetric signal was found to be reduced after consecutive immobilization. Serum corticosterone levels were measured directly after a single and after 5 daily immobilization periods. After single immobilization the serum corticosterone level was found to be about 270 ng/ml. After the 5th immobilization about 300 ng/ml were detected. These differences were not found to be significant. In summary, our data indicate that the serotonin metabolism shows habituation in nearly all brain areas after repeated immobilization, though the corticosterone level at the end of the immobilization period was comparable after single and repeated immobilization.  相似文献   

4.
The effect of chronic treatment with a tryptophan (TRP)-free diet on the free-running circadian wheel-running rhythm and the central serotonergic system was investigated in blinded male rats. The long-term TRP-free diet did not change periods of activity, but disordered their patterns. This seemed to be due to masking, entrainment, enhancement of the morning activity, and obscuring of the activity onset as well as appearance of some periodic activities within the subjective night. A long-term TRP-fre diet decreased the concentration of TRP, 5-hydroxytryptamine (5-HT), and 5-hydroxyindoleacetic acid (5-HIAA) in all brain regions tested: frontal cortex, hippocampus, thalamus, hypothalamus, midbrain, and pons. Density of 5-HT1A receptor binding was significantly decreased in the frontal cortex and hypothalamus, whereas no significant change was observed in the density of 5-HT2 receptor binding in all regions. These results suggest that the period of primary circadian pacemaker is not affected, but its oscillation, as well as the coupling strength between the primary and secondary pacemakers, is weakened by the dysfunction of the serotonergic system caused by chronic TRP depletion.  相似文献   

5.
The levels of noradrenaline (NA) and 3-methoxy-4-hydroxyphenylethyleneglycol sulphate (MHPG-SO4) in 15 brain regions showed a parallel distribution in male Wistar rats. The differences in regional distribution of MHPG-SO4 were similar to those in the rate of NA turnover reported by other investigators. The accumulation rates of MHPG-SO4 during 45 and 90 min after probenecid injection significantly correlated to the steady state levels of MHPG-SO4 in nine regions studied. With the results, the regional levels of MHPG-SO4 either in untreated or in probenecid-treated rats, are considered to be a useful index of NA turnover.  相似文献   

6.
Effects of lead-arsenic combined exposure on central monoaminergic systems   总被引:1,自引:0,他引:1  
Lead acetate (116 mg/kg/day), arsenic (11 or 13.8 mg/kg/day as sodium arsenite), a lead-arsenic mixture or vehicle were administered to adult mice through gastric intubation during 14 days. Then, the regional content of norepinephrine (NE), dopamine (DA), serotonin (5-HT), 3,4 dihydroxyphenyl-acetic acid (DOPAC), 5-hydroxyindole-3-acetic acid (5-HIAA), arsenic, and lead were quantified. Compared with the accumulation after single element exposures, the mixture elicited a higher accumulation of lead and a lower arsenic accumulation in the brain. Compared to controls, lead induced only an augmentation of DOPAC (200%) in the hypothalamus. By contrast, the mixture provoked increases of DOPAC in the hypothalamus (250%), DA and 5-HIAA in the striatum (67 and 187%, respectively) and NE decreased in the hypothalamus (45%). Although these alterations were similar to those produced by arsenic alone, the mixture provoked a 38% decrease of NE in the hippocampus and increases of 5-HT in midbrain and frontal cortex (100 and 90%, respectively) over control values, alterations that were not elicited by either metal alone. These results demonstrate an interaction arsenic/lead on the central monoaminergic systems of the adult mouse.  相似文献   

7.
Although alterations in serotonin levels and neurotransmission are associated with depressive disorders and effective antidepressant therapy, the exact cause of these disorders and the mode of action of antidepressant drugs are poorly understood. In a genetic rat model of depression [Flinders sensitive line (FSL) rats], deviations from normal serotonin (5-HT) levels and metabolism in specific brain regions were determined. The levels of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), in tissue punches of various brain regions were quantitated simultaneously with an HPLC apparatus coupled to an electrochemical detector. In the nucleus accumbens, prefrontal cortex, hippocampus, and hypothalamus of FSL rats, the levels of 5-HT and 5-HIAA were three- to eightfold higher than in control Sprague-Dawley rats. Significant differences in the levels of 5-HT and 5-HIAA in the striatum and raphe nucleus of the "depressed" and normal rats were not observed. After chronic treatment with the antidepressant desipramine (5 mg/kg/day for 18 days), the immobility score in a swim test, as a measure of a behavioral deficit, and 5-HT levels of the FSL rats became normalized, but these parameters in the control rats did not change. The [5-HIAA]/[5-HT] ratio was lower in the nucleus accumbens and hypothalamus of the FSL than in the control rats, and increased after desipramine treatment only in the nucleus accumbens of the FSL rats. These results indicate that the behavioral deficits expressed in the FSL model for depression correlate with increased 5-HT levels in specific limbic sites and suggest the FSL rats as a novel model for clarification of the molecular mechanism of clinically used antidepressant drugs.  相似文献   

8.
The relationship between central serotonergic activities and voluntary alcohol consumption was studied in Sprague-Dawley rats, which normally have low alcohol preference. After initial screening for an evenly matched baseline alcohol preference, selective central serotonergic lesioning was induced by intracisternal injection of the serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT). Control rats received injections of vehicle only. Both 5,7-DHT and vehicle-treated rats were further divided into two subgroups, which either had continued free access to ethanol (alcohol-drinking) or were deprived of it (alcohol-free). All rats were then tested again for alcohol preference. All rats were then killed, and the levels of monoamines in the brains were determined by high performance liquid chromatography with electrochemical detection. Behavioral results indicated that all 5,7-DHT-treated rats had significantly higher alcohol preference and consumption than the corresponding sham controls. Except in the cerebellum, the 5,7-DHT-treated rats had significantly lower levels of serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) in most brain regions compared with those in the corresponding sham controls. Treatment with 5,7-DHT also resulted in a decrease in serotonin turnover in all brain regions in the alcohol-free rats, except in the cerebellum. In alcohol-drinking rats, however, 5,7-DHT treatment only reduced serotonin turnover in the pons. The levels of norepinephrine and dopamine in several brain regions were not significantly different. Thus, it appeared that in the Sprague Dawley rats, 5,7-DHT treatment depleted 5-HT and 5-HIAA levels in most brain regions while increasing alcohol consumption. Chronic alcohol-drinking attenuated the increase in alcohol consumption associated with serotonergic lesions. Voluntary alcohol consumption seemed more associated with 5-HT turnover than with tissue 5-HT levels. Our data also suggested that tolerance to alcohol-induced hypothermia was primarily attributable to long-term alcohol drinking rather than serotonergic lesioning.  相似文献   

9.
Chronic electroshock treatment (once daily for 12 days) increases extracellular norepinephrine in the frontal cortex and hippocampus as measured by microdialysis. This chronic treatment produced an elevation of basal norepinephrine overflow into extracellular space while both the first and the twelfth treatments produced a transient increase in norepinephrine overflow of about 40 min. Acutely, desmethylimipramine (10 mg/kg) treatment significantly increased extracellular norepinephrine. While chronic desmethylimipramine (once daily for 10 days) increased basal overflow of norepinephrine in the frontal cortex and hippocampus, the tenth daily administration of desmethylimipramine did not produce a statistically significant increase in extracellular norepinephrine. Both daily electroshock and daily desmethylimipramine produced down regulation of beta-adrenoceptors in the hippocampus and the frontal cortex. Chronic electroshock caused up regulation of alpha-adrenoceptors in the frontal cortex but not in the hippocampus while chronic desmethylimipramine administration did not alter alpha-adrenoceptors in either structure. Depletion of norepinephrine with reserpine or with 6-hydroxydopamine prevented the down regulation of beta-adrenoceptors while depletion of this neurotransmitter did not prevent the electroshock-induced up regulation of alpha-adrenoceptors in the frontal cortex. These data suggest that down regulation of beta-adrenoceptors is mediated through increases in extracellular norepinephrine. In contrast, up regulation of alpha-adrenoceptors appears to be independent of norepinephrine release and does not require the presence of noradrenergic neurons in order to be induced by electroshock.  相似文献   

10.
The effect of 17 beta-estradiol (E2) on the response of dopamine (DA) and serotonin (5-HT) to acute lithium in the brains of ovariectomized rats was investigated. An E2 injection (100 ng/s.c.) to ovariectomized rats did not change striatal DA levels, whereas the levels of its metabolites dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), increased 30 min later; concentrations of 5-HT and its metabolite, 5-hydroxyindoleacetic acid (5-HIAA), also remained unchanged. In the frontal cortex, DA, 5-HT, HVA and 5-HIAA levels remained unchanged after the E2 injection, whereas DOPAC levels and DOPAC/DA and HVA/DA ratios increased 30 min later. Injection of LiCl (10 mEq) decreased striatal DA levels, increased DOPAC levels and slightly decreased HVA levels; by contrast, frontal cortex DA and HVA levels increased but DOPAC levels were unchanged. A biphasic response of striatal 5-HT levels occurred, increasing shortly after injection of LiCl, followed by a decrease; 5-HIAA levels, however, increased. In the frontal cortex, injection of rats with LiCl led to a gradual increase in 5-HT levels, whereas 5-HIAA concentrations decreased. In the presence of E2, LiCl effected a greater decrease in striatal DA than injection of LiCl alone, advanced the DOPAC peak by 30 min and increased HVA levels; E2 had less effect on the 5-HT response to LiCl, except the decreases in 5-HT and 5-HIAA at 60 min were greater. Furthermore, in the striatum, the increased DA turnover caused by LiCl, estimated by the DOPAC/DA and HVA/DA ratios, was advanced in rats treated with E2. In the presence of E2, LiCl slightly increased frontal cortex DA, DOPAC and HVA levels compared with treatment with LiCl alone, whereas DOPAC levels decreased in rats treated with LiCl + E2 compared with levels in E2-treated rats. Generally, higher levels of 5-HT and 5-HIAA were measured in the frontal cortices of rats treated with LiCl + Ex compared with rats injected with LiCl. These results indicate that E2 potentiates the acute effect of lithium on striatal and frontal cortex DA and 5-HT levels and metabolism, suggesting a role of the hormonal state on this drug response.  相似文献   

11.
The effects of water-immersion restraint stress (WS) on chronically nicotine-administered rats were studied in the blood and various regions of the brain. Serotonin (5-HT) levels increased in the hypothalamus, hippocampus, cortex and cerebellum following the administration of nicotine. 5-HT levels increased in all the brain regions following stress. Nicotine decreased stress-induced increased levels of 5-HT in the hippocampus and cerebellum. Nicotine administration alone increased 5-hydroxyindole acetic acid (5-HIAA) levels in the hippocampus and cerebellum. Stress alone also increased 5-HIAA levels in all the brain regions. In the cortex, 5-HT and 5-HIAA levels further increased following the administration of a combination of stress and nicotine compared to rats given stress alone. In the blood as well as in all the brain regions, except the cerebellum, stress or nicotine administration did not affect tryptophan levels. Stress given to nicotine-administered rats resulted in a decrease in tryptophan levels in the blood and plasma. Although 5-HT and 5-HIAA levels were not influenced by stress and/or nicotine administration, the 5-HIAA/5-HT ratio increased in the blood and plasma of rats administered with nicotine and exposed to stress. The effects of nicotine on the serotonergic system depend upon the kind of stress given together with the organs and brain regions involved.  相似文献   

12.
There is considerable preclinical evidence for a relationship between noradrenergic brain systems and behaviors associated with stress and anxiety. The majority of noradrenergic neurons are located in the locus coeruleus (pons), with projections throughout the cerebral cortex and multiple subcortical areas, including hippocampus, amygdala, thalamus, and hypothalamus. This neuroanatomical formation of the noradrenergic system makes it well suited to rapidly and globally modulate brain function in response to changes in the environment, as occurs during the presentation of stressors. Stress exposure is associated with an increase in firing of the locus coeruleus and with associated increased release and turnover of norepinephrine in brain regions which receive noradrenergic innervation. Increased firing of the locus coeruleus is also associated with behavioral manifestations of fear, such as arched back and piloerection in the cat. Exposure to chronic stress results in long-term alterations in locus coeruleus firing and norepinephrine release in target brain regions of the locus coeruleus. Norepinephrine is also involved in neural mechanisms such as sensitization and fear conditioning, which are associated with stress. These findings are relevant to an understanding of psychiatric disorders, such as panic disorder and post-traumatic stress disorder (PTSD), the symptoms of which have been hypothesized to be related to alterations in noradrenergic function.  相似文献   

13.
A light microscopic immunocytochemical study, using antisera against noradrenaline (NA) and dopamine-beta-hydroxylase (DBH), revealed the noradrenergic system in the brain of the chicken (Gallus domesticus). NA- and DBH-immunoreactive (ir) elements showed a similar distribution throughout the whole brain. The neurons immunoreactive for the monoamine were confined to the lower brainstem, the pons, and the medulla. In the pons, a rather dense group of cells was found in the dorsal, most posterior part of the locus coeruleus and in the caudal nucleus subcoeruleus ventralis. A few labeled cells appeared in and around the nucleus olivaris superior in the most caudal part of the metencephalic tegmentum. In the medulla oblongata, noradrenergic cells could be visualized at the level of the nucleus of the solitary tract and in a ventrolateral complex. Virtually all regions of the brain contained a rather dense innervation by NA- and DBH-immunopositive varicose fibers. Noradrenergic fibers and terminals were especially abundant in the ventral forebrain and in the periventricular hypothalamic regions. DBH-ir and NA-ir fibers, varicosities, and punctate structures could be observed in close association with immunonegative perikarya in several brain regions, more specifically in the ventral telencephalon, in the mid- and tuberal hypothalamic region, and in the dorsal rostral pons. Some perikarya in these brain areas were completely surrounded by noradrenergic structures that formed pericellular arrangements around the cells. The present study on the distribution of the noradrenergic system in the brain of the chicken combined with the results of a previous report on the distribution of L-Dopa and dopamine in the same species (L. Moons, J. van Gils, E. Ghijsels, and F. Vandesande, 1994, J. Comp. Neurol. 346:97-118) offers the opportunity to differentiate between the various catecholamines in the brain of this vertebrate. The results are discussed in relation to catecholaminergic systems previously reported in avian species and in the mammalian brain.  相似文献   

14.
The effects of chronic administration of [D-Pen2, D-Pen5]enkephalin and [D-Ala2, Glu4]deltorphin II, the selective agonists of the delta 1- and delta 2-opioid receptors, on the binding of [3H]MK-801, a noncompetitive antagonist of the N-methyl-D-aspartate receptor, were determined in several brain regions of the mouse. Male Swiss-Webster mice were injected intracerebroventricularly (i.c.v.) with [D-Pen2, D-Pen5]enkephalin or [D-Ala2, Glu4]deltorphin II (20 micrograms/mouse) twice a day for 4 days. Vehicle injected mice served as controls. Previously we have shown that the above treatment results in the development of tolerance to their analgesic activity. The binding of [3H]MK-801 was determined in brain regions (cortex, midbrain, pons and medulla, hippocampus, striatum, hypothalamus and amygdala). At 5 nM-concentration, the binding of [3H]MK-801 was increased in cerebral cortex, hippocampus, and pons and medulla of [D-Pen2, D-Pen5]enkephalin treated mice. In [D-Ala2, Glu4]deltorphin II treated mice, the binding of [3H]MK-801 was increased in cerebral cortex and hippocampus. The changes in the binding were due to increases in the Bmax value of [3H]MK-801. It is concluded that tolerance to delta 1- and delta 2-opioid receptor agonists is associated with up-regulation of brain N-methyl-D-aspartate receptors, however, some brain areas affected differ with the two treatments. The results are consistent with the recent observation from this laboratory that N-methyl-D-aspartate receptors antagonists block tolerance to the analgesic action of delta 1- and delta 2-opioid receptor agonists.  相似文献   

15.
The effect of chronic immobilization (2 h/day) for 13 days on basal and stress levels of GH and TSH, and their response to various hypothalamic regulatory factors was studied in male Sprague-Dawley rats. Chronic immobilization (IMO) resulted in reduced serum TSH levels in stress situations but not in resting conditions. GH secretion was inhibited both in resting and stress situations. Chronic IMO impaired both GH and TSH responses to GRH and TRH, respectively, but also to another peptide (VIP) stimulatory for the two hormones. Whereas somatostatin administration inhibited GH secretion in control but not in chronic IMO rats, its inhibitory effect on TSH was slight and similar in the two experimental groups. The present results suggest that chronic exposure to a severe stressor such as IMO alters GH and TSH secretion, at least in part by changes in the response of the pituitary to the hypothalamic regulatory factors. The actual influence of chronic IMO on the release of these peptides into the median eminence remains to be studied.  相似文献   

16.
In situ hybridization was combined with serotonin (5-hydroxytryptamine, 5-HT) or tyrosine hydroxylase immunocytochemistry and with Fluoro-Gold retrograde labeling of bulbo-spinal pathways in order to investigate the expression of GAP-43 mRNA in monoamine cell groups of the adult rat brain stem. Consistent with previous reports, GAP-43 mRNA was observed in serotonin and dopamine cell groups in the pons. In addition, GAP-43 expressing cells were observed in all the major monoamine cell groups in the medulla. Thus the B1, B2 and B3 serotonin cell groups all showed high GAP-43 expression in all contained many GAP-43 expressing serotonin cells with spinal cord projections. The A1, A2, A5 and A6 noradrenaline cell groups also showed high GAP-43 expression, although cells with spinal cord projections were largely restricted to the A5 group and A6 subcoeruleus region. In all areas, GAP-43 expressing cells with spinal cord projections were also observed which were not serotonergic or noradrenergic.  相似文献   

17.
Male Wistar rats were subjected to either bilateral aspiration lesions of the dorsal regions of the prefrontal cortex (PFC) or sham lesions and placed on a 6-week, modified sucrose-fading procedure. At the time of sacrifice, the size of the lesion, both in anterior-posterior and medial-lateral dimensions, was measured. Following sacrifice, levels of dopamine (DA), serotonin (5-HT), norepinephrine (NE), and their metabolites were measured in the midbrain (raphe) and nucleus accumbens (NA). Lesioned animals had reductions in 5-HT in the NA, and DA and NE in the raphe. The lesioned group drank more of a solution of 5% alcohol than controls early in the sucrose fading, and less during the later stages. In the lesioned group, the size of the left- and right-hemisphere lesions predicted 5-HIAA levels in the NA, and 5-HT and 5-HIAA levels in the raphe. A laterality effect was noted, such that the size of left-hemisphere lesions were positively associated with raphe 5-HT and 5-HIAA levels, and negatively associated with 5-HT levels in the NA, while right-hemisphere lesions showed the opposite relationships. In addition, the width of the left-hemisphere lesion predicted some measures of alcohol intake. These results suggest that, in the rat, the dorsal PFC is involved in the regulation of monoamines in subcortical regions known to be important in the regulation of reinforced behaviors, and that this regulation differs between hemispheres and shows a laterality effect. In addition, the dorsal PFC appears to have a subtle involvement in the regulation of alcohol intake.  相似文献   

18.
The selective serotonin uptake inhibitor fluoxetine (10 mg/kg i.p.) increased tissue levels of the norepinephrine metabolite 3-methoxy-4-hydroxyphenylethylene glycol sulfate (MHPG-SO4) in rat hypothalamus, indicating an increased release of norepinephrine. Microdialysis studies in conscious rats showed that fluoxetine (10 mg/kg i.p.) increased extracellular concentrations of norepinephrine as well as serotonin in the hypothalamus. In contrast, desipramine (10 mg/kg i.p.) increased extracellular concentration of norepinephrine but not serotonin in the hypothalamus. Consistent with its mechanism of being a selective serotonin uptake inhibitor, local perfusion of fluoxetine (10 microM) caused a 7-fold increase in hypothalamic extracellular serotonin and a small non-significant increase in extracellular norepinephrine. The subsequent systemic injection of fluoxetine (10 mg/kg s.c.) after local perfusion caused a 3-fold increase in extracellular norepinephrine, indicating that fluoxetine's action leading to an increase in extracellular norepinephrine was not occurring in the terminal areas of the hypothalamus but elsewhere in the brain, possibly cell bodies in the locus coeruleus.  相似文献   

19.
The effects of the cytokines interferon (IFN)-gamma, interleukin (IL)-1, and tumor necrosis factor (TNF)-alpha on the serotoninergic transmission in the nucleus raphe dorsalis (NRD) were studied after peripheral and central application. The studies were performed in the freely moving rat using differential pulse voltammetry with multicarbon fibre electrodes to study the extracellular levels of the serotonin (5-HT) metabolite 5-hydroxyindoleacetic acid (5-HIAA). The extracellular 5-HIAA levels were not changed in the NRD after peripheral application of rat recombinant IFN-gamma, but elevated by the cytokines IL-1 beta and TNF-alpha. After intracerebroventricular (i.c.v.) application the cytokines IFN-gamma, IL-1 beta and TNF-alpha stimulated the serotoninergic transmission in the NRD. Our data suggest that the effect of peripherally elevated cytokine concentrations on the serotonin metabolism in the NRD of the rat is cytokine-dependent. In this respect the T-cell and NK-cell cytokine IFN-gamma acts clearly different when compared to the mainly macrophage-derived cytokines IL-1 beta and TNF-alpha, and plays a different role in the communication between immune and central nervous system.  相似文献   

20.
Effects of chronic L-deprenyl administration on hyperactive behaviour and brain monoamine levels were studied in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats. SHR were hyperactive, impulsive and had impaired sustained attention when tested with a multiple 2-min fixed interval (FI) 5-min extinction (EXT) schedule of reinforcement. Even low, 0.25 mg/kg, doses of chronically-administered L-deprenyl reduced the impulsiveness (bursts of responses with short interresponse times) of SHR, without altering the general hyperactivity or the impaired sustained attention. The drug had no effect on WKY behaviour. The levels of noradrenaline (NA), dopamine (DA), serotonin (5-hydroxytryptamine, 5-HT) and their metabolites, measured in neostriatum, nucleus accumbens and frontal cortex, showed that L-deprenyl effectively inhibited monoamine oxidase (MAO) activity. These results suggest that impulsiveness is a behavioural component that may be operating independent of the other components, like hyperactivity and deficient sustained attention, and that can be reduced by chronic MAO-B inhibition with L-deprenyl in this strain of rats. The positive effect of L-deprenyl on impulsiveness is discussed as due either to normalization of an asymmetric dopaminergic activity in the nucleus accumbens, or to a restoration of normal DA function in the prefrontal cortex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号