首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was undertaken to determine the effect of variations in temperature, relative humidity, occupancy density and location (indoor/outdoor) on the concentrations of viable airborne bacterial and fungal spores at an air-conditioned and a non air-conditioned food stall in Singapore. Typically, bioaerosols consisted of 50.5% bacteria and 49.5% fungi in the indoor environment. In contrast, for the outdoor environment, bacteria on an average only accounted for 20.6% of culturable airborne microorganisms whereas fungal concentrations were 79.4%. Results on bioaerosol size distributions revealed that 67% of indoor bacteria and 68% of outdoor bacteria, 85% of indoor fungi and 68% of outdoor fungi were associated with fine mode particulates (<3.3 μm). Occupant density was the key factor that affected indoor airborne bacteria concentrations while concentrations of outdoor airborne bacteria depended strongly on ambient temperature. Indoor fungal concentration was positively correlated to relative humidity whereas outdoor fungal concentration was positively correlated to relative humidity and negatively correlated to temperature. The study also compared the biological air quality between a non air-conditioned food stall (Stall A) and an air-conditioned food stall (Stall B). The dining area of the former had lower bacterial concentrations as compared to the latter, while fungal spore’s concentrations showed a reverse trend. The dominant airborne bacteria genera were Staphylococcus, Pseudomonas, Alcaligens, and Corynebacterium whereas Penicillium, Aspergillus and Cladosporium were the most common fungal genera and groups in both food stalls.  相似文献   

2.
Under sustained, elevated building moisture conditions, bacterial and fungal growth occurs. The goal of this study was to characterize microbial growth in floor dust at variable equilibrium relative humidity (ERH) levels. Floor dust from one home was embedded in coupons cut from a worn medium‐pile nylon carpet and incubated at 50%, 80%, 85%, 90%, 95%, and 100% ERH levels. Quantitative PCR and DNA sequencing of ribosomal DNA for bacteria and fungi were used to quantify growth and community shifts. Over a 1‐wk period, fungal growth occurred above 80% ERH. Growth rates at 85% and 100% ERH were 1.1 × 104 and 1.5 × 105 spore equivalents d?1 mg dust?1, respectively. Bacterial growth occurred only at 100% ERH after 1 wk (9.0 × 104 genomes d?1 mg dust?1). Growth resulted in significant changes in fungal (P<.00001) and bacterial community structure (P<.00001) at varying ERH levels. Comparisons between fungal taxa incubated at different ERH levels revealed more than 100 fungal and bacterial species that were attributable to elevated ERH. Resuspension modeling indicated that more than 50% of airborne microbes could originate from the resuspension of fungi grown at ERH levels of 85% and above.  相似文献   

3.
The aim of this study was to investigate the effect of relative humidity (RH) on the aerosolization and total inflammatory potential (TIP) of microbial particles released from gypsum boards inoculated with dust samples from homes. After microbial colonization, the gypsum boards were incubated at either high or low RH. The aerosolized particles (0.54–19.8 μm), culturable fungi, β‐glucan and the TIP of the aerosolized particles were quantified. Despite the colonization of several fungal groups, Penicillium dominated the aerosolized fraction. Higher emission rates of particles and culturable fungi were found from low RH compared with high RH in both the inhalable and particulate matter <1 μm (PM1) fractions, and the TIP was accordingly higher. However, for the aerosolized fractions, the TIP or concentration β‐glucan relative to the number of fungi or particles present was higher from high RH compared with low RH. Despite the low number of culturable fungi in PM1, this fraction showed a high TIP, and the concentration of β‐glucan correlated strongly with the TIP of this fraction. The individual particles of the aerosolized PM1 fraction were more inflammatory than the larger particles of the inhalable fraction, and β‐glucan may be an important contributor to the inflammatory potential of the aerosolized particles.  相似文献   

4.
Resuspension of microbes in floor dust and subsequent inhalation by human occupants is an important source of human microbial exposure. Microbes in carpet dust grow at elevated levels of relative humidity, but rates of this growth are not well established, especially under changing conditions. The goal of this study was to model fungal growth in carpet dust based on indoor diurnal variations in relative humidity utilizing the time-of-wetness framework. A chamber study was conducted on carpet and dust collected from 19 homes in Ohio, USA and exposed to varying moisture conditions of 50%, 85%, and 100% relative humidity. Fungal growth followed the two activation regime model, while bacterial growth could not be evaluated using the framework. Collection site was a stronger driver of species composition (P = 0.001, R2 = 0.461) than moisture conditions (P = 0.001, R2 = 0.021). Maximum moisture condition was associated with species composition within some individual sites (P = 0.001-0.02, R2 = 0.1-0.33). Aspergillus, Penicillium, and Wallemia were common fungal genera found among samples at elevated moisture conditions. These findings can inform future studies of associations between dampness/mold in homes and health outcomes and allow for prediction of microbial growth in the indoor environment.  相似文献   

5.
Abe K 《Indoor air》2012,22(3):173-185
Previously, the author proposed a 'fungal index' that quantifies the capacity for fungal growth in a test environment where a device (fungal detector) encapsulating spores of a xerophilic sensor fungus Eurotium herbariorum was placed. It was also found that an extremely xerophilic fungus, Aspergillus penicillioides, was suitable as a sensor fungus at sites with lower relative humidity (RH). In this report, the hydrophilic fungus Alternaria alternata was added to sensor fungi for the determination of the index in extremely humid environments. Measurements of the index and observations of the formation of spores by the sensor fungi were made in stable climates in moisture chambers, under natural conditions in homes, and in bathrooms prepared in an artificial climate chamber. Higher index values and earlier sporulation were obtained at higher RH in stable climates. The hydrophilic Alt. alternata showed the greatest response at 100% and 97.3% RH, the moderately xerophilic Eur. herbariorum, at 94%, 84%, and 75% RH, and the extremely xerophilic Asp. penicillioides, at 71% RH. In homes, the hydrophilic fungus was most active in water-usage areas, and the xerophilic fungi were most active in non-water-usage areas. Sporulation was observed on sensor fungi in fungal detectors placed in rooms where the index exceeded 18 ru/week after one-month exposure. Sites where the index exceeded 18 ru/week were referred to as damp, where fungal contamination seems to be unavoidable. Evaluations of ventilation systems in bathrooms with extremely humid climates showed typical examples of a countermeasure to fungal contamination. PRACTICAL IMPLICATIONS: The purpose of this study is to establish a fungal index applicable in home environments with extremely high to relatively low relative humidity climates. The sensor fungus that showed the greatest response in a fungal detector (a device encapsulating spores of sensor fungi) served as not only a quantitative but also a qualitative indicator of the environment tested, indicating the type of fungi that would contaminate the site. A fungal index would be a good tool for detecting dampness that induces fungal contamination, which has adverse effects on human health. Evaluations of indoor climates would provide information useful to building owners, builders, designers, advisers, medical practitioners, and so on. Selection of the most suitable insulation systems in various buildings under different climates or evaluations of the drying process in water-damaged buildings could also be possible using fungal detectors and measurements of fungal indices.  相似文献   

6.
We determined the moisture levels, relative humidity (RH) or moisture content (MC) of materials, and concentrations of culturable fungi, actinomycetes and total spores as well as a composition of fungal flora in 122 building material samples collected from 18 moisture problem buildings. The purpose of this work was to clarify if the is any correlation between the moisture parameters and microbial levels or generic composition depending on the type of materials and the time passed after a water damage. The results showed an agreement between the concentrations of total spores and culturable fungi for the wood, wood-based and gypsum board samples (r > 0.47). The concentrations of total spores and/or culturable fungi correlated with RH of materials particularly among the wood and insulation materials (r > 0.79), but not usually with MC (r < 0.45). For the samples collected from ongoing damage, there was a correlation between RH of materials and the concentrations of total spores and culturable fungi (r > 0.51), while such a relationship could not be observed for the samples taken from dry damage. A wide range of fungal species were found in the samples from ongoing damage, whereas Penicillia and in some cases yeasts dominated the fungal flora in the dry samples. This study indicates that fungal contamination can be evaluated on the basis of moisture measurements of constructions in ongoing damage, but the measurements are not solely adequate for estimation of possible microbial growth in dry damage.  相似文献   

7.
Fungi are known to occur ubiquitously in the environment. In the past years, the occurrence of filamentous fungi in the aquatic environment has been a subject of growing interest. This study describes the occurrence of various fungal genera in different drinking water sources being Penicillium and Trichoderma the most representative ones (30% and 17%, respectively). Also, 24 fungal species that have not been previously described in the aquatic environment are reported in this study, being once again the major species from the Penicillium genera. This study therefore contributes to the knowledge on the richness of fungi diversity in water. 68% of the described species were found to be able to grow at 30 °C but only Aspergillus fumigatus, Aspergillus viridinutans and Cunninghamella bertholletiae were able to grow at the higher temperature tested (42 °C). 66% of the species that were able to grow at 30 °C have spore sizes below 5 μm which enables them to cause breathing infections. These were therefore identified as potential pathogenic species.  相似文献   

8.
Indoor microbial communities vary in composition and diversity depending on material type, moisture levels, and occupancy. In this study, we integrated bacterial cell counting, fungal biomass estimation, and fluorescence-assisted cell sorting (FACS) with amplicon sequencing of bacterial (16S rRNA) and fungal (ITS) communities to investigate the influence of wetting on medium density fiberboard (MDF) and gypsum wallboard. Surface samples were collected longitudinally from wetted materials maintained at high relative humidity (~95%). Bacterial and fungal growth patterns were strongly time-dependent and material-specific. Fungal growth phenotypes differed between materials: spores dominated MDF surfaces while fungi transitioned from spores to hyphae on gypsum. FACS confirmed that most of the bacterial cells were intact (viable) on both materials over the course of the study. Integrated cell count and biomass data (quantitative profiling) revealed that small changes in relative abundance often resulted from large changes in absolute abundance, while negative correlations in relative abundances were explained by rapid growth of only one group of bacteria or fungi. Comparisons of bacterial-bacterial and fungal-bacterial networks suggested a top-down control of fungi on bacterial growth, possibly via antibiotic production. In conclusion, quantitative profiling provides novel insights into microbial growth dynamics on building materials with potential implications for human health.  相似文献   

9.
集中式空调机组系统微生物污染的实测分析   总被引:1,自引:0,他引:1  
对陕西历史博物馆集中通风空调机组设备的积尘伴生微生物和空气微生物进行了实测。分析结果表明,机组粗效过滤器对微生物的去除效果,细菌优于真菌;空气处理机组内部本身有真菌滋生,真菌浓度最大时达到200.3cfu/皿,系统微生物污染可导致送风空气质量的下降;微生物浓度与相对湿度具有显著的正相关性;空调机组的真菌优势菌属是青霉属、曲霉属和枝孢霉属。  相似文献   

10.
Green building materials are becoming more popular. However, little is known about their ability to support or limit microbial growth. The growth of fungi was evaluated on five building materials. Two green, two conventional building materials and wood as a positive control were selected. The materials were inoculated with Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum, in the absence and presence of house dust. Microbial growth was assessed at four different time points by cultivation and determining fungal biomass using the N‐acetylhexosaminidase (NAHA) enzyme assay. No clear differences were seen between green and conventional building materials in their susceptibility to support microbial growth. The presence of dust, an external source of nutrients, promoted growth of all the fungal species similarly on green and conventional materials. The results also showed a correlation coefficient ranging from 0.81 to 0.88 between NAHA activity and culturable counts. The results suggest that the growth of microbes on a material surface depends on the availability of organic matter rather than the classification of the material as green or conventional. NAHA activity and culturability correlated well indicating that the two methods used in the experiments gave similar trends for the growth of fungi on material surfaces.  相似文献   

11.
To investigate the effect of air-conditioning parameters (including temperature, relative humidity and air velocity) and deposition dust on microbial growth in supply air duct, a complete test facility according to ASHRAE Standard 62.1-2007 was constructed. A series of experiments for testing microbial concentration (including bacteria and fungus) were conducted under different working conditions (such as different temperatures and relative humidity). The air velocity was constantly kept at 2.0 m/s. Orthogonal design was employed for the analysis of test data. The results indicated that air velocity attenuation down the direction of the supply air affected dust distribution at the bottom of duct, to some extent, and the number of microorganisms was positively correlated with the quantity of dust. In the range of temperature 22-32 °C and relative humidity (RH) 40-90%, microbial growth significantly accelerated with higher temperature and RH increasing. The organic compounds composing the dust also had great impact on microbial growth. The basic researches are contributed to control the growth of microorganism and improve the indoor microenvironment in the air-conditioning room.  相似文献   

12.
This paper investigates the impact of clay and moisture contents on the shear behavior of compacted earth taking into account loading-unloading cycles. Fine sand was added to a natural soil, thereby obtaining three different soils with clay contents of 35%, 26%, and 17%, respectively. A series of triaxial tests was conducted on samples previously equilibrated at three different values of relative humidity (RH). The evolution of failure strength fc, Young's modulus E, and residual strain εres was investigated according to the clay content and the RH, the last two parameters being measured during the loading-unloading cycles. Firstly, the relative humidity at which the samples were fabricated and conditioned was seen to have a strong impact on the mechanical characteristics of the earthen material. An increase in RH led to a decrease in both failure strength fc and Young’s modulus E, and an increase in plastic strain. The tendencies were found to depend on the clay content of the samples. Secondly, with an increasing stress level, a progressive decrease in Young’s modulus and an increase in residual strain εres (after a loading-unloading cycle) appeared. Thirdly, within the range of the investigated clay contents, both failure strength fc and residual strain εres increased with an increasing clay content at constant values of RH and confining pressure, the rate of this increase being a function of the RH. Young’s modulus E was relatively insensitive to changes in the clay content, its variation being less than 20% for all cases. Finally, based on a particular definition of Bishop's effective stress, involving a specific functional form χ(s), the failure states of all the samples were observed to lie approximately on a unique failure line crossing the origin in the (p′-q) plane regardless of the matric suction and confining pressure.  相似文献   

13.
Drought and heat tolerance of the Sunagoke moss (Racomitrium japonicum) and the low thermal conductivity of the dry moss tissue offer novel greening and insulation possibilities of roofs and walls to mitigate the heat island phenomenon in urban environments. However, damage may appear in the moss panels under humid conditions in Japan. In this study we characterized fungi associated with the damaged areas of the Sunagoke moss panels. Fungi were identified by morphology and internal transcribed spacer (ITS) sequence analysis and tested for pathogenicity on R. japonicum (Grimmiaceae) and an unrelated moss species (Physcomitrella patens; Funariaceae) under controlled conditions. Alternaria alternata, Fusarium avenaceum and Fusarium oxysporum caused severe necrosis and death, whereas Cladosporium oxysporum and Epicoccum nigrum caused milder discoloration or chlorosis in both moss species. The fungi pathogenic on moss were closely related to fungal pathogens described from cultivated vascular plants. Ammonium increased severity of fungal diseases in moss. This study demonstrated that fungi can cause economically significant diseases in cultivated moss and hamper commercial use of the moss panels unless appropriate control methods are developed. Use of a single moss clone to cover large surfaces and the air pollutants such as ammonium may increase the risk for fungal disease problems.  相似文献   

14.
Microbiological analysis of atmospheres witnessed substantial technical improvements in the 1940s to 1960s. May's cascade impactor and Hirst's spore trap allowed the counting of total cells but had limited capacity for identification of the spores. Bourdillon's sampler enabled the counting of cultivable fungi and their identification. A great step forward was given with the Andersen's six-stage impactor, which allowed discrimination of particles by size, counting of cultivable cells, and species identification. This period also witnessed the development of impingers, namely, the AGI-30 described by Malligo and Idoine, and the three-stage model designed by K. R. May. The 1990s to 2000s witnessed innovative discoveries on the biology of indoor fungi. Work carried out in several laboratories showed that indoor fungi can release groups of spores, individual spores and fungal fragments, and produce volatile organic compounds and mycotoxins. Integrating all findings a holistic interpretation emerged for the sick building syndrome. Healthy houses and buildings, with low indoor humidity, display no appreciable indoor fungal growth, and outdoor Cladosporium dominates. On the contrary, in sick houses and buildings, high indoor humidity allows fungal growth (mainly of Penicillium and Aspergillus), with concomitant release of conidia and fragments into the atmosphere. The intoxication probably results from a chronic exposure to volatile organic compounds and mycotoxins produced by Penicillium, Aspergillus, and Stachybotrys.Very clean atmospheres are difficult to study by conventional methods. However, some of these atmospheres, namely, those of hospital rooms, should be monitored. Sedimentary sampling, chemical methods applied to impinger's collection liquid, and selected molecular methods can be useful in this context.It was concluded that fungi can be useful indicators of indoor air quality and that it is important to deepen the studies of indoor atmospheres in order to promote air quality, the health and well-being of all, and a better understanding of the biology of indoor fungi.  相似文献   

15.
Biological hazards associated with the manufacturing of noodles have not been well characterized in Taiwan. This is an issue that flour workers can be exposed to bioaerosols (airborne fungi and bacteria) resulting flour-induced occupational asthma or allergic diseases. This study is to survey the species and concentrations of bioaerosols at different sites within a noodle factory for one year, and to investigate the effects of environmental factors on concentrations of bioaerosols. Air samples were taken twice a day, one day each month using a MAS-100 bioaerosol sampler.Nine species of culturable fungi were identified, with the main airborne fungi being Cladosporium, Penicillium, Aspergillus spp., non-sporing isolates and yeasts. Cladosporium, Penicillium and Aspergillus were the dominant fungal isolates in the indoor and outdoor air samples. Micrococcus spp. and Staphylococcus xylosus were the dominant bacterial isolates. Peak fungal and bacterial concentrations occurred at the crushing site, with mean values of 3082 and 12,616 CFU/m3. Meanwhile, the most prevalent fungi and bacteria at the crushing site were in ranges of 2.1-1.1 μm and 1.1-0.65 μm, respectively. Significant seasonal differences in total bacterial concentration were observed at all sampling sites (?P < 0.05). Moreover, significant seasonal differences were observed for most of the fungal genera except Fusarium. Levels of Aspergillus and Rhizopus differed significantly during the two sampling times, as did levels of Micrococcus spp. and Staphylococcus arlettae.Regarding the same operation procedures, relative humidity affected fungi levels more than temperature did. However, crushing generated the highest concentration of bioaerosols among all operation procedures. Furthermore, levels of bacteria at sites fitted with ventilation systems were lower than at sites without ventilation systems, especially at the crushing site. Therefore, we recommend these workers at the crushing site wear breathing protection and improve the local ventilation systems to minimize the biological hazards.  相似文献   

16.
Coarse-grained fill or drainage layers beneath heated slab-on-ground structures are warm and moist throughout the year. According to the in situ measurements, the relative humidity of the fill layer is high at RH ≈100%100%. High relative humidity of the fill layer is not a sign of an un-functional drainage or capillary break layer, but a natural boundary condition for a slab structure adjacent to the moist subsoil. Due to the favourable conditions, microbe growth is very common in fill layers. Fungal or bacterial growth, in general, was detected in 98% of the test specimens taken beneath the ground slabs of heated buildings. Indicator species, either fungal or bacterial, were detected in 79% of the specimens. Yet, no moisture damage related to the ground floors was ever detected or recorded in the test buildings. The high microbe concentration in the fill layer beneath ground slabs is not a sign of moisture damage, but a natural state of the moist and warm fill layer.  相似文献   

17.
Fungal endophytes can affect the heavy metal uptake of their host plants and increase the tolerance of their host plants to heavy metal stress. Therefore, in the present study, a wide-range screening of the fungal endophyte communities was conducted to determine the fungal distribution and diversity on S. caprea roots on a metal polluted site. Fungal communities were screened using amplification with the 5.8S-ITS2-28S part of the rDNA operon, with the resulting amplicons analysed by temporal temperature gradient gel electrophoresis (TTGE) and sequencing. This technique is reproducible and shows good coverage of ascomycete and basidiomycete taxa, as 68% and 32% of all of the sequences, respectively. No clear shift in fungal ITS-TTGE profiles from S. caprea roots was seen along the secondary succession stages. Ascomycetes dominated the more polluted plots, while there was a greater diversity of basidiomycetes in the less polluted and control plots, suggesting greater tolerance of ascomycetes in comparison with basidiomycete fungi. The high diversity of DSEs was confirmed at the highly metal-enriched locations, with species belonging to the genera Phialophora, Phialocephala and Leptodontidium. Furthermore, the DSE colonisation of S. caprea roots and the frequency of the sequences showing affinity towards DSE genus Phialophora, showed good correspondence with soil Pb, Cd and plant-available P concentrations, possibly indicating that DSEs improve metal tolerance of willows to high heavy metal contamination.  相似文献   

18.
The release and transport of fungal spores from water-damaged building materials is a key factor for understanding the exposure to particles of fungal origin as a possible cause of adverse health effects associated to growth of fungi indoors. In this study, the release of spores from nine species of typical indoor fungi has been measured under controlled conditions. The fungi were cultivated for a period of 4-6 weeks on sterilized wet wallpapered gypsum boards at a relative humidity (RH) of approximately 97%. A specially designed small chamber (P-FLEC) was placed on the gypsum board. The release of fungal spores was induced by well-defined jets of air impacting from rotating nozzles. The spores and other particles released from the surface were transported by the air flowing from the chamber through a top outlet to a particle counter and sizer. For two of the fungi (Penicillium chrysogenum and Trichoderma harzianum), the number of spores produced on the gypsum board and subsequently released was quantified. Also the relationship between air velocities from 0.3 to 3 m/s over the surface and spore release has been measured. The method was found to give very reproducible results for each fungal isolate, whereas the spore release is very different for different fungi under identical conditions. Also, the relationship between air velocity and spore release depends on the fungus. For some fungi a significant number of particles smaller than the spore size were released. The method applied in the study may also be useful for field studies and for generation of spores for exposure studies.  相似文献   

19.
This study offers a new perspective on the role of relative humidity in strategies to improve the health and wellbeing of office workers. A lack of studies of sufficient participant size and diversity relating relative humidity (RH) to measured health outcomes has been a driving factor in relaxing thermal comfort standards for RH and removing a lower limit for dry air. We examined the association between RH and objectively measured stress responses, physical activity (PA), and sleep quality. A diverse group of office workers (n = 134) from four well-functioning federal buildings wore chest-mounted heart rate variability monitors for three consecutive days, while at the same time, RH and temperature (T) were measured in their workplaces. Those who spent the majority of their time at the office in conditions of 30%-60% RH experienced 25% less stress at the office than those who spent the majority of their time in drier conditions. Further, a correlational study of our stress response suggests optimal values for RH may exist within an even narrower range around 45%. Finally, we found an indirect effect of objectively measured poorer sleep quality, mediated by stress responses, for those outside this range.  相似文献   

20.
《Building and Environment》1998,34(2):205-211
Volatile emissions from the cultures of three decay fungi on aspen and two soft rot fungi on gypsum board were investigated at 97–99% relative humidity of air. Air samples from the incubation chambers were adsorbed on Tenax TA tubes and 2,4-dinitrophenylhydrazine cartridges, and analyzed by thermal desorption-gas chromatography and HPLC, respectively. The composition of volatile metabolites varied significantly between the fungal species studied. Emissions of the brown rot fungi included pinenes, acrolein and few ketones. On the other hand, the production of alcohols from brown rot fungal cultures on aspen was poor during the 6–10 weeks of growth. The soft rot fungi emitted mostly ketones and alcohols. A significant ability of fungal growth to decrease aldehyde emissions was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号